मराठी

The Equation of the Circle Concentric with X2 + Y2 − 3x + 4y − C = 0 and Passing Through (−1, −2) is - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is

पर्याय

  •  x2 + y2 − 3x + 4y − 1 = 0

  • x2 + y2 − 3x + 4y = 0

  • x2 + y2 − 3x + 4y + 2 = 0

  • none of these

MCQ

उत्तर

x2 + y2 − 3x + 4y = 0

The centre of the circle x2 + y2 − 3x + 4y − c = 0 is \[\left( \frac{3}{2}, - 2 \right)\].

Therefore, the centre of the required circle is \[\left( \frac{3}{2}, - 2 \right)\].

The equation of the circle is \[\left( x - \frac{3}{2} \right)^2 + \left( y + 2 \right)^2 = a^2\] ...(1)

Also, circle (1) passes through (−1, −2).

\[\therefore \left( - 1 - \frac{3}{2} \right)^2 + \left( - 2 + 2 \right)^2 = a^2\]

⇒ \[a = \frac{5}{2}\] 

Substituting the value of in equation (1):

\[\left( x - \frac{3}{2} \right)^2 + \left( y + 2 \right)^2 = \left( \frac{5}{2} \right)^2 \]

\[ \Rightarrow \frac{\left( 2x - 3 \right)^2}{4} + \left( y + 2 \right)^2 = \frac{25}{4}\]

\[ \Rightarrow \left( 2x - 3 \right)^2 + 4 \left( y + 2 \right)^2 = 25\]

\[ \Rightarrow x^2 + y^2 - 3x + 4y = 0\]

Hence, the required equation of the circle is \[x^2 + y^2 - 3x + 4y = 0\].

shaalaa.com
Circle - Standard Equation of a Circle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: The circle - Exercise 24.6 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 24 The circle
Exercise 24.6 | Q 16 | पृष्ठ ४०

संबंधित प्रश्‍न

Find the equation of the circle with:

Centre (aa) and radius \[\sqrt{2}\]a.


Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.


Find the equation of a circle
which touches both the axes and passes through the point (2, 1).


Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.


A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles:  x2 + y2 + 6x − 8y − 24 = 0


Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)


Find the equation of the circle passing through the points:

 (0, 0), (−2, 1) and (−3, 2)


Find the equation of the circle which passes through the points (3, 7), (5, 5) and has its centre on the line x − 4y = 1.


Find the equation of the circle which circumscribes the triangle formed by the lines 2x + y − 3 = 0, x + y − 1 = 0 and 3x + 2y − 5 = 0


Find the equation of the circle which circumscribes the triangle formed by the lines

 x + y = 2, 3x − 4y = 6 and x − y = 0.


Find the equation of the circle which circumscribes the triangle formed by the lines  y = x + 2, 3y = 4x and 2y = 3x.


Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.


Find the equation of the circle concentric with x2 + y2 − 4x − 6y − 3 = 0 and which touches the y-axis.


Find the equation of the circle which passes through the points (2, 3) and (4,5) and the centre lies on the straight line y − 4x + 3 = 0.


Find the equation of the circle the end points of whose diameter are the centres of the circles x2 + y2 + 6x − 14y − 1 = 0 and x2 + y2 − 4x + 10y − 2 = 0.


Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.


Find the equation of the circle whose diameter is the line segment joining (−4, 3) and (12, −1). Find also the intercept made by it on y-axis.


ABCD is a square whose side is a; taking AB and AD as axes, prove that the equation of the circle circumscribing the square is x2 + y2 − a (x + y) = 0.


If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is


The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if


The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is


The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2, 3y = 4x, 2y = 3x is ______.


Equation of a circle which passes through (3, 6) and touches the axes is ______.


Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.


The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×