मराठी

Find the Equation of a Circle Which Touches Both the Axes and Passes Through the Point (2, 1). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a circle
which touches both the axes and passes through the point (2, 1).

उत्तर

Let (hk) be the centre of a circle with radius a.
Thus, its equation will be \[\left( x - h \right)^2 + \left( y - k \right)^2 = a^2\]

Let the required equation of the circle be

\[\left( x - h \right)^2 + \left( y - k \right)^2 = a^2\]

It is given that the circle touches both the axes.
Thus, the required equation will be

\[x^2 + y^2 - 2ax - 2ay + a^2 = 0\]

Also, the circle passes through the point (2, 1).
∴ \[4 + 1 - 4a - 2a + a^2 = 0\]

\[\Rightarrow a^2 - 6a + 5 = 0\]
\[ \Rightarrow a^2 - 5a - a + 5 = 0\]
\[ \Rightarrow a = 1, 5\]

Hence, the required equation is \[x^2 + y^2 - 2x - 2y + 1 = 0\] or

\[x^2 + y^2 - 10x - 10y + 25 = 0\]
shaalaa.com
Circle - Standard Equation of a Circle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: The circle - Exercise 24.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 24 The circle
Exercise 24.1 | Q 7.3 | पृष्ठ २१

संबंधित प्रश्‍न

Find the equation of the circle with:

Centre (−2, 3) and radius 4.


Find the equation of the circle whose centre lies on the positive direction of - axis at a distance 6 from the origin and whose radius is 4.


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.


Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.


Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.


Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.


A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.


Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.


If the lines 2x  3y = 5 and 3x − 4y = 7 are the diameters of a circle of area 154 square units, then obtain the equation of the circle.


Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2+ 5y = 18.


Show that the point (xy) given by  \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\]  lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.

 


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles:  x2 y2 − ax − by = 0


Find the equation of the circle passing through the points:

 (0, 0), (−2, 1) and (−3, 2)


Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.


Find the equation of the circle which circumscribes the triangle formed by the lines x + + 3 = 0, x − y + 1 = 0 and x = 3


If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.


Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and - axes.


The line 2x − y + 6 = 0 meets the circle x2 + y2 − 2y − 9 = 0 at A and B. Find the equation of the circle on AB as diameter.


Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are


If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is


The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is


If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval


If the circles x2 + y2 = 9 and x2 + y2 + 8y + c = 0 touch each other, then c is equal to


The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is


The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is


The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is


If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =


Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is


Equation of the circle through origin which cuts intercepts of length a and b on axes is


The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×