Advertisements
Advertisements
प्रश्न
Find the equation of the circle whose centre lies on the positive direction of y - axis at a distance 6 from the origin and whose radius is 4.
उत्तर
Let (h, k) be the centre of a circle with radius a.
Thus, its equation will be
Thus, the coordinates of the centre are (0, 6).
∴ Equation of the circle = \[\left( x - 0 \right)^2 + \left( y - 6 \right)^2 = a^2\]
Substituting the value of a in equation (1): \[\left( x - 0 \right)^2 + \left( y - 6 \right)^2 = 16\]
\[ \Rightarrow x^2 + y^2 - 12y + 20 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with:
Centre (a, b) and radius\[\sqrt{a^2 + b^2}\]
Find the equation of the circle with:
Centre (a, a) and radius \[\sqrt{2}\]a.
Find the centre and radius of each of the following circles:
(x − 1)2 + y2 = 4
Find the centre and radius of each of the following circles:
(x + 5)2 + (y + 1)2 = 9
Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.
Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.
A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.
Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.
Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.
If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k.
Find the coordinates of the centre and radius of the following circle:
1/2 (x2 + y2) + x cos θ + y sin θ − 4 = 0
Find the coordinates of the centre and radius of each of the following circles: x2 + y2 − ax − by = 0
Find the equation of the circle passing through the points:
(5, 7), (8, 1) and (1, 3)
Find the equation of the circle passing through the points:
(0, 0), (−2, 1) and (−3, 2)
Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.
Find the equation of the circle which circumscribes the triangle formed by the lines
x + y = 2, 3x − 4y = 6 and x − y = 0.
Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.
Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.
Find the equation of the circle which passes through the points (2, 3) and (4,5) and the centre lies on the straight line y − 4x + 3 = 0.
The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.
Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.
The abscissae of the two points A and B are the roots of the equation x2 + 2ax − b2 = 0 and their ordinates are the roots of the equation x2 + 2px − q2 = 0. Find the equation of the circle with AB as diameter. Also, find its radius.
Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.
If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.
The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is
The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is
If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval
The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is
If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval
The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is
The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is
Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is
Equation of a circle which passes through (3, 6) and touches the axes is ______.
Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.