Advertisements
Advertisements
प्रश्न
If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval
पर्याय
(−3, −2) ∪ (3, 4)
−3, 4
(−∞, −3) ∪ (4, ∞)
(−∞, −2) ∪ (3, ∞)
उत्तर
(−∞, −3) ∪ (4, ∞)
The given equations of the circles are x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13.
Since (2, k) lies outside the given circles, we have: \[4 + k^2 + 2 - 2k - 14 > 0\] and \[4 + k^2 > 13\]
\[\Rightarrow k^2 - 2k - 8 > 0\] and \[k^2 > 9\]
\[\Rightarrow \left( k - 4 \right)\left( k + 2 \right) > 0\] and \[k^2 > 9\]
\[\Rightarrow k > 4 \text { or } k < - 2\] and \[k > 3 \text { or } k < - 3\]
\[\Rightarrow k > 4 \text { and } k < - 3\]
\[\Rightarrow k \in \left( - \infty , - 3 \right) \cup \left( 4, \infty \right)\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with:
Centre (a, a) and radius \[\sqrt{2}\]a.
Find the centre and radius of each of the following circles:
(x + 5)2 + (y + 1)2 = 9
Find the centre and radius of each of the following circles:
x2 + y2 − 4x + 6y = 5
Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.
Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.
Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.
A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.
Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.
If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle.
Show that the point (x, y) given by \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\] lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.
The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.
Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7
Find the coordinates of the centre and radius of the following circle:
1/2 (x2 + y2) + x cos θ + y sin θ − 4 = 0
Find the equation of the circle passing through the points:
(5, 7), (8, 1) and (1, 3)
Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.
Find the equation of the circle which circumscribes the triangle formed by the lines 2x + y − 3 = 0, x + y − 1 = 0 and 3x + 2y − 5 = 0
Find the equation of the circle which circumscribes the triangle formed by the lines y = x + 2, 3y = 4x and 2y = 3x.
Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.
Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.
Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.
Find the equation of the circle whose diameter is the line segment joining (−4, 3) and (12, −1). Find also the intercept made by it on y-axis.
Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.
Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).
If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.
The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is
The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is
If the circles x2 + y2 = 9 and x2 + y2 + 8y + c = 0 touch each other, then c is equal to
The equation of a circle with radius 5 and touching both the coordinate axes is
The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is
The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if
The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is
The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to
If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =
If (x, 3) and (3, 5) are the extremities of a diameter of a circle with centre at (2, y), then the values of x and y are
If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =
Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is
The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.