मराठी

A Circle of Radius 4 Units Touches the Coordinate Axes in the First Quadrant. Find the Equations of Its Images with Respect to the Line Mirrors X = 0 And Y = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.

उत्तर

It is given that a circle of radius 4 units touches the coordinate axes in the first quadrant.
Centre of the given circle = (4, 4)
The equation of the given circle is \[\left( x - 4 \right)^2 + \left( y - 4 \right)^2 = 16\]

The images of this circle with respect to the line mirrors x = 0 and y = 0. They have their centres at \[\left( - 4, 4 \right) and \left( 4, - 4 \right),\]respectively.
∴ Required equations of the images = \[\left( x + 4 \right)^2 + \left( y - 4 \right)^2 = 16\] and \[\left( x - 4 \right)^2 + \left( y + 4 \right)^2 = 16\]

= \[x^2 + y^2 + 8x - 8y + 16 = 0\] and

\[x^2 + y^2 - 8x + 8y + 16 = 0\]

 

shaalaa.com
Circle - Standard Equation of a Circle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: The circle - Exercise 24.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 24 The circle
Exercise 24.1 | Q 11 | पृष्ठ २१

संबंधित प्रश्‍न

Find the equation of the circle with:

Centre (−2, 3) and radius 4.


Find the centre and radius of each of the following circles:

(x + 5)2 + (y + 1)2 = 9


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).


If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.


Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.


Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7


Find the equation of the circle passing through the points:

 (5, −8), (−2, 9) and (2, 1)


Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.


Prove that the centres of the three circles x2 y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.


Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.


Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.


Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.


Find the equation of the circle the end points of whose diameter are the centres of the circles x2 + y2 + 6x − 14y − 1 = 0 and x2 + y2 − 4x + 10y − 2 = 0.


Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.


Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.


Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and - axes.


Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.


Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.


If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are


The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is


If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is


Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is


Equation of the circle through origin which cuts intercepts of length a and b on axes is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×