Advertisements
Advertisements
प्रश्न
Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.
उत्तर
Let the required equation of the circle be
Also, centre of the required circle = \[\left( 2, 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with:
Centre (a, b) and radius\[\sqrt{a^2 + b^2}\]
Find the centre and radius of each of the following circles:
(x − 1)2 + y2 = 4
Find the centre and radius of each of the following circles:
x2 + y2 − 4x + 6y = 5
Find the centre and radius of each of the following circles:
x2 + y2 − x + 2y − 3 = 0.
Find the equation of the circle whose centre lies on the positive direction of y - axis at a distance 6 from the origin and whose radius is 4.
If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.
Find the equation of a circle
which touches both the axes and passes through the point (2, 1).
Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.
A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.
A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.
Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2x + 5y = 18.
Show that the point (x, y) given by \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\] lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.
Find the equation of the circle passing through the points:
(5, 7), (8, 1) and (1, 3)
Find the equation of the circle passing through the points:
(5, −8), (−2, 9) and (2, 1)
Find the equation of the circle passing through the points:
(0, 0), (−2, 1) and (−3, 2)
Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.
Find the equation of the circle which passes through the points (3, 7), (5, 5) and has its centre on the line x − 4y = 1.
Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.
If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.
Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.
Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.
Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.
Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.
Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).
If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is
If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is
The equation of a circle with radius 5 and touching both the coordinate axes is
The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is
If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =
If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =
The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2, 3y = 4x, 2y = 3x is ______.
Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.
The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.