Advertisements
Advertisements
प्रश्न
Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).
उत्तर
We need to find the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).
Let the equation of the circle be \[\left( x - h \right)^2 + \left( y - k \right)^2 = a^2\] .
Putting x = y = 0:
\[h^2 + k^2 = a^2\] ...(1)
Putting x = 4, y = 0 in the equation of the circle:
\[\left( 4 - h \right)^2 + \left( 0 - k \right)^2 = a^2 \]
\[ \Rightarrow 16 + h^2 - 8h + k^2 = a^2 \]
\[ \Rightarrow 16 - 8h + a^2 = a^2 \left( \text
{ From } (1) \right)\]
\[ \Rightarrow h = 2\]
Putting x = 0, y = −6 in the equation of the circle:
\[\left( 0 - h \right)^2 + \left( - 6 - k \right)^2 = a^2 \]
\[ \Rightarrow 36 + h^2 + 12k + k^2 = a^2 \]
\[ \Rightarrow 36 + 12k + a^2 = a^2 \left( \text { From } (1) \right)\]
\[ \Rightarrow k = - 3\]
Hence, the centre of the circle is \[\left( 2, - 3 \right)\] .
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with:
Centre (−2, 3) and radius 4.
Find the equation of the circle with:
Centre (a, a) and radius \[\sqrt{2}\]a.
Find the centre and radius of each of the following circles:
(x − 1)2 + y2 = 4
Find the centre and radius of each of the following circles:
x2 + y2 − 4x + 6y = 5
Find the centre and radius of each of the following circles:
x2 + y2 − x + 2y − 3 = 0.
Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).
Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.
Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.
Find the equation of a circle
which touches both the axes and passes through the point (2, 1).
One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.
Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7
Find the coordinates of the centre and radius of the following circle:
1/2 (x2 + y2) + x cos θ + y sin θ − 4 = 0
Find the equation of the circle passing through the points:
(0, 0), (−2, 1) and (−3, 2)
Find the equation of the circle which passes through the points (3, 7), (5, 5) and has its centre on the line x − 4y = 1.
Find the equation of the circle which circumscribes the triangle formed by the lines y = x + 2, 3y = 4x and 2y = 3x.
Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.
Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.
Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.
Find the equation of the circle the end points of whose diameter are the centres of the circles x2 + y2 + 6x − 14y − 1 = 0 and x2 + y2 − 4x + 10y − 2 = 0.
The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.
Find the equation of the circle whose diameter is the line segment joining (−4, 3) and (12, −1). Find also the intercept made by it on y-axis.
Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.
If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is
The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is
The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is
If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is
The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is
The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to
Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is
Equation of a circle which passes through (3, 6) and touches the axes is ______.
The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.