Advertisements
Advertisements
प्रश्न
Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).
उत्तर
We need to find the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).
Let the equation of the circle be \[\left( x - h \right)^2 + \left( y - k \right)^2 = a^2\] .
Putting x = y = 0:
\[h^2 + k^2 = a^2\] ...(1)
Putting x = 4, y = 0 in the equation of the circle:
\[\left( 4 - h \right)^2 + \left( 0 - k \right)^2 = a^2 \]
\[ \Rightarrow 16 + h^2 - 8h + k^2 = a^2 \]
\[ \Rightarrow 16 - 8h + a^2 = a^2 \left( \text
{ From } (1) \right)\]
\[ \Rightarrow h = 2\]
Putting x = 0, y = −6 in the equation of the circle:
\[\left( 0 - h \right)^2 + \left( - 6 - k \right)^2 = a^2 \]
\[ \Rightarrow 36 + h^2 + 12k + k^2 = a^2 \]
\[ \Rightarrow 36 + 12k + a^2 = a^2 \left( \text { From } (1) \right)\]
\[ \Rightarrow k = - 3\]
Hence, the centre of the circle is \[\left( 2, - 3 \right)\] .
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with:
Centre (0, −1) and radius 1.
Find the equation of the circle with:
Centre (a cos α, a sin α) and radius a.
Find the equation of the circle with:
Centre (a, a) and radius \[\sqrt{2}\]a.
Find the centre and radius of each of the following circles:
(x + 5)2 + (y + 1)2 = 9
Find the equation of the circle whose centre lies on the positive direction of y - axis at a distance 6 from the origin and whose radius is 4.
Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.
Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.
The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.
If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.
Find the coordinates of the centre and radius of each of the following circles: x2 + y2 + 6x − 8y − 24 = 0
Find the coordinates of the centre and radius of the following circle:
1/2 (x2 + y2) + x cos θ + y sin θ − 4 = 0
Find the coordinates of the centre and radius of each of the following circles: x2 + y2 − ax − by = 0
Find the equation of the circle passing through the points:
(5, 7), (8, 1) and (1, 3)
Find the equation of the circle passing through the points:
(0, 0), (−2, 1) and (−3, 2)
Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.
Find the equation of the circle which circumscribes the triangle formed by the lines x + y + 3 = 0, x − y + 1 = 0 and x = 3
Prove that the centres of the three circles x2 + y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.
Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.
Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.
Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.
The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.
Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.
Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and y - axes.
Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.
Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.
If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then its centre is ______.
The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is
If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is
The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is
The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is
Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is
Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.
The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.