हिंदी

The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.

विकल्प

  • x2 + y2 = 9a2

  • x2 + y2 = 16a2

  • x2 + y2 = 4a2

  • x2 + y2 = a2

MCQ
रिक्त स्थान भरें

उत्तर

The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is x2 + y2 = 4a2.

Explanation:

Let ABC be an equilateral triangle in which median AD = 3a.

Centre of the circle is same as the centroid of the triangle

i.e., (0, 0)

AG : GD = 2 : 1

So, AG = `2/3` AD = `2/3 xx 3a = 2a`

∴ The equation of the circle is (x – 0)2 + (y – 0)2 = (2a)2

⇒ x2 + y2 = 4a2

shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise [पृष्ठ २०६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise | Q 50 | पृष्ठ २०६

संबंधित प्रश्न

Find the centre and radius of each of the following circles:

(x + 5)2 + (y + 1)2 = 9


Find the centre and radius of each of the following circles:

x2 + y2 − 4x + 6y = 5


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


Find the equation of the circle whose centre lies on the positive direction of - axis at a distance 6 from the origin and whose radius is 4.


If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.


Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k


If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of  the circle.


Show that the point (xy) given by  \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\]  lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.

 


Find the equation of the circle passing through the points:

 (0, 0), (−2, 1) and (−3, 2)


Find the equation of the circle which circumscribes the triangle formed by the lines x + + 3 = 0, x − y + 1 = 0 and x = 3


Find the equation of the circle which circumscribes the triangle formed by the lines

 x + y = 2, 3x − 4y = 6 and x − y = 0.


Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.


Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.


The line 2x − y + 6 = 0 meets the circle x2 + y2 − 2y − 9 = 0 at A and B. Find the equation of the circle on AB as diameter.


Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.


Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


If the radius of the circle x2 + y2 + ax + (1 − a) y + 5 = 0 does not exceed 5, write the number of integral values a.


Write the area of the circle passing through (−2, 6) and having its centre at (1, 2).


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is


The equation of a circle with radius 5 and touching both the coordinate axes is


The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is


Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×