हिंदी

Write the Length of the Intercept Made by the Circle X2 + Y2 + 2x − 4y − 5 = 0 on Y-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.

उत्तर

Since the intercept lies on the y-axis, by putting x = 0 in the given equation, we get:

\[y^2 - 4y - 5 = 0\]

\[\Rightarrow y = - 1, 5\]

Thus, the length of the intercept on the y-axis is (5 + 1) = 6 units.

shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.4 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.4 | Q 1 | पृष्ठ ३८

संबंधित प्रश्न

Find the equation of the circle with:

Centre (a cos α, a sin α) and radius a.


Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).


Find the equation of the circle whose centre lies on the positive direction of - axis at a distance 6 from the origin and whose radius is 4.


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.


A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


Find the equation of the circle passing through the points:

 (5, −8), (−2, 9) and (2, 1)


Find the equation of the circle passing through the points:

 (0, 0), (−2, 1) and (−3, 2)


Find the equation of the circle which circumscribes the triangle formed by the lines 2x + y − 3 = 0, x + y − 1 = 0 and 3x + 2y − 5 = 0


Find the equation of the circle which circumscribes the triangle formed by the lines  y = x + 2, 3y = 4x and 2y = 3x.


Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.


Find the equation of the circle concentric with x2 + y2 − 4x − 6y − 3 = 0 and which touches the y-axis.


If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.


Find the equation of the circle which passes through the points (2, 3) and (4,5) and the centre lies on the straight line y − 4x + 3 = 0.


Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.


Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.


The abscissae of the two points A and B are the roots of the equation x2 + 2ax − b2 = 0 and their ordinates are the roots of the equation x2 + 2px − q2 = 0. Find the equation of the circle with AB as diameter. Also, find its radius.


Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.


Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).


If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.


If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then its centre is ______. 


If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval


If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is


The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is


The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is


The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is


If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =


Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is


If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then


Equation of a circle which passes through (3, 6) and touches the axes is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×