Advertisements
Advertisements
प्रश्न
If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =
विकल्प
11
-11
24
none of these
उत्तर
−11
The centre of the circle x2 + y2 + 6x + 8y − 5 = 0 is (−3, −4).
The circle x2 + y2 + 2gx + 2fy + c = 0 is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0.
Thus, the centre of x2 + y2 + 2gx + 2fy + c = 0 is (−3, −4).
\[\therefore g = 3, f = 4\]
Also, it is given that (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0.
\[\left( - 3 \right)^2 + 2^2 + 2\left( 3 \right)\left( - 3 \right) + 2\left( 4 \right)\left( 2 \right) + c = 0\]
\[\Rightarrow 9 + 4 - 18 + 16 + c = 0\]
\[ \Rightarrow c = - 11\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with:
Centre (0, −1) and radius 1.
Find the equation of the circle with:
Centre (a, a) and radius \[\sqrt{2}\]a.
Find the centre and radius of each of the following circles:
(x − 1)2 + y2 = 4
Find the centre and radius of each of the following circles:
(x + 5)2 + (y + 1)2 = 9
Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.
Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.
Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.
A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.
Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.
Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2x + 5y = 18.
If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle.
Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7
Find the coordinates of the centre and radius of each of the following circles: x2 + y2 − ax − by = 0
Find the equation of the circle passing through the points:
(0, 0), (−2, 1) and (−3, 2)
Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.
Find the equation of the circle which circumscribes the triangle formed by the lines
x + y = 2, 3x − 4y = 6 and x − y = 0.
Find the equation of the circle which circumscribes the triangle formed by the lines y = x + 2, 3y = 4x and 2y = 3x.
If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.
Find the equation of the circle the end points of whose diameter are the centres of the circles x2 + y2 + 6x − 14y − 1 = 0 and x2 + y2 − 4x + 10y − 2 = 0.
Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.
Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and y - axes.
Find the equation of the circle whose diameter is the line segment joining (−4, 3) and (12, −1). Find also the intercept made by it on y-axis.
The abscissae of the two points A and B are the roots of the equation x2 + 2ax − b2 = 0 and their ordinates are the roots of the equation x2 + 2px − q2 = 0. Find the equation of the circle with AB as diameter. Also, find its radius.
ABCD is a square whose side is a; taking AB and AD as axes, prove that the equation of the circle circumscribing the square is x2 + y2 − a (x + y) = 0.
Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).
If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are
If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is
If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is
The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is
If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval
If the circles x2 + y2 = 9 and x2 + y2 + 8y + c = 0 touch each other, then c is equal to
The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is
The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to
Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is
Equation of the circle through origin which cuts intercepts of length a and b on axes is
The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.