हिंदी

If a Circle Passes Through the Point (0, 0),(A, 0),(0, B) Then Find the Coordinates of Its Centre. - Mathematics

Advertisements
Advertisements

प्रश्न

If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.

उत्तर

The general equation of the circle is x2 + y2 + 2gx + 2fy c = 0
Now, it is passing through (0, 0)
∴ c = 0
Also, it is passing through (a, 0)
∴  a2 + 2ag = 0
⇒ a(a + 2g) = 0
a + 2g = 0

\[\Rightarrow g = - \frac{a}{2}\]

Again, it is passing through (0, b)
 b2 + 2bf = 0
⇒ b(b + 2f) = 0
b + 2f = 0

\[\Rightarrow f = - \frac{b}{2}\]

The coordinates of its centre are given by

\[\left( - g, - f \right) = \left( \frac{a}{2}, \frac{b}{2} \right)\]
shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.2 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.2 | Q 14 | पृष्ठ ३२

संबंधित प्रश्न

Find the equation of the circle with:

Centre (aa) and radius \[\sqrt{2}\]a.


Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.


Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.


A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


Show that the point (xy) given by  \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\]  lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.

 


Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7


Find the coordinates of the centre and radius of the following circle:

1/2 (x2 + y2) + x cos θ + y sin θ − 4 = 0


Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)


Find the equation of the circle passing through the points:

 (0, 0), (−2, 1) and (−3, 2)


Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.


Find the equation of the circle which circumscribes the triangle formed by the lines  y = x + 2, 3y = 4x and 2y = 3x.


Find the equation of the circle which passes through the points (2, 3) and (4,5) and the centre lies on the straight line y − 4x + 3 = 0.


Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.


Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and - axes.


The abscissae of the two points A and B are the roots of the equation x2 + 2ax − b2 = 0 and their ordinates are the roots of the equation x2 + 2px − q2 = 0. Find the equation of the circle with AB as diameter. Also, find its radius.


The line 2x − y + 6 = 0 meets the circle x2 + y2 − 2y − 9 = 0 at A and B. Find the equation of the circle on AB as diameter.


Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.


Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).


If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.


Write the area of the circle passing through (−2, 6) and having its centre at (1, 2).


If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are


If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then its centre is ______. 


If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


The equation of a circle with radius 5 and touching both the coordinate axes is


The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if


The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =


Equation of a circle which passes through (3, 6) and touches the axes is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×