हिंदी

Find the Equation of the Circle Passing Through the Points: (0, 0), (−2, 1) and (−3, 2) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the circle passing through the points:

 (0, 0), (−2, 1) and (−3, 2)

उत्तर

Let the required circle be

\[x^2 + y^2 + 2gx + 2fy + c = 0\]  ...(1)
It passes through (0, 0), (−2, 1) and (−3, 2).
Substituting the coordinates of these points in equation (1):
\[c = 0\] ...(2)
\[5 - 4g + 2f + c = 0\]  ...(3)
\[13 - 6g + 4f + c = 0\] ...(4)
Simplifying (2), (3) and (4):
\[g = \frac{- 3}{2}, f = \frac{- 11}{2}, c = 0\]
The equation of the required circle is
\[x^2 + y^2 - 3x - 11y = 0\]
shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.2 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.2 | Q 2.4 | पृष्ठ ३२

संबंधित प्रश्न

Find the equation of the circle with:

Centre (0, −1) and radius 1.


Find the equation of the circle with:

Centre (a cos α, a sin α) and radius a.


Find the centre and radius of each of the following circles:

x2 + y2 − 4x + 6y = 5


Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.


Find the equation of a circle
which touches both the axes and passes through the point (2, 1).


Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.


Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.


A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.


A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.


If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k


Show that the point (xy) given by  \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\]  lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.

 


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.


Find the equation of the circle which circumscribes the triangle formed by the lines

 x + y = 2, 3x − 4y = 6 and x − y = 0.


Prove that the centres of the three circles x2 y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.


Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.


Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.


Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.


Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and - axes.


Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are


If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then its centre is ______. 


The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is


If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is


If the circles x2 + y2 = 9 and x2 + y2 + 8y + c = 0 touch each other, then c is equal to


The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is


The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


If (x, 3) and (3, 5) are the extremities of a diameter of a circle with centre at (2, y), then the values of x and y are


Equation of a circle which passes through (3, 6) and touches the axes is ______.


The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×