हिंदी

Find the Equation of the Circle Which Passes Through the Origin and Cuts off Chords of Lengths 4 and 6 on the Positive Side of the X-axis and Y-axis Respectively. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.

उत्तर

According to the question, the circle passes through the origin.
Let the equation of the circle be

\[x^2 + y^2 - 2hx - 2ky = 0\]

The circle cuts off chords of lengths 4 and 6 on the positive sides of the x-axis and the y-axis, respectively.

∴ Centre = \[\left( \frac{4}{2}, \frac{6}{2} \right) = \left( 2, 3 \right) = \left( h, k \right)\]

\[\Rightarrow h = 2, k = 3\]

∴ Required equation: \[x^2 + y^2 + 2\left( - 2 \right)x + 2\left( - 3 \right)y = 0\]

\[\Rightarrow x^2 + y^2 - 4x - 6y = 0\]
shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.2 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.2 | Q 10 | पृष्ठ ३२

संबंधित प्रश्न

Find the equation of the circle with:

Centre (ab) and radius\[\sqrt{a^2 + b^2}\]


Find the equation of the circle with:

Centre (a cos α, a sin α) and radius a.


Find the equation of the circle with:

Centre (aa) and radius \[\sqrt{2}\]a.


Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.


Find the equation of the circle whose centre lies on the positive direction of - axis at a distance 6 from the origin and whose radius is 4.


Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.


Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2+ 5y = 18.


If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of  the circle.


One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles:  x2 + y2 + 6x − 8y − 24 = 0


Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7


Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)


Find the equation of the circle which passes through the points (3, 7), (5, 5) and has its centre on the line x − 4y = 1.


Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.


Find the equation of the circle which circumscribes the triangle formed by the lines

 x + y = 2, 3x − 4y = 6 and x − y = 0.


Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.


Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and - axes.


Find the equation of the circle whose diameter is the line segment joining (−4, 3) and (12, −1). Find also the intercept made by it on y-axis.


Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.


Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.


Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.


If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


If the radius of the circle x2 + y2 + ax + (1 − a) y + 5 = 0 does not exceed 5, write the number of integral values a.


The radius of the circle represented by the equation 3x2 + 3y2 + λxy + 9x + (λ − 6) y + 3 = 0 is


The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is


If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval


The equation of a circle with radius 5 and touching both the coordinate axes is


The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is


The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to


Equation of a circle which passes through (3, 6) and touches the axes is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×