हिंदी

The Equation of the Circle Concentric with X2 + Y2 − 3x + 4y − C = 0 and Passing Through (−1, −2) is - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is

विकल्प

  •  x2 + y2 − 3x + 4y − 1 = 0

  • x2 + y2 − 3x + 4y = 0

  • x2 + y2 − 3x + 4y + 2 = 0

  • none of these

MCQ

उत्तर

x2 + y2 − 3x + 4y = 0

The centre of the circle x2 + y2 − 3x + 4y − c = 0 is \[\left( \frac{3}{2}, - 2 \right)\].

Therefore, the centre of the required circle is \[\left( \frac{3}{2}, - 2 \right)\].

The equation of the circle is \[\left( x - \frac{3}{2} \right)^2 + \left( y + 2 \right)^2 = a^2\] ...(1)

Also, circle (1) passes through (−1, −2).

\[\therefore \left( - 1 - \frac{3}{2} \right)^2 + \left( - 2 + 2 \right)^2 = a^2\]

⇒ \[a = \frac{5}{2}\] 

Substituting the value of in equation (1):

\[\left( x - \frac{3}{2} \right)^2 + \left( y + 2 \right)^2 = \left( \frac{5}{2} \right)^2 \]

\[ \Rightarrow \frac{\left( 2x - 3 \right)^2}{4} + \left( y + 2 \right)^2 = \frac{25}{4}\]

\[ \Rightarrow \left( 2x - 3 \right)^2 + 4 \left( y + 2 \right)^2 = 25\]

\[ \Rightarrow x^2 + y^2 - 3x + 4y = 0\]

Hence, the required equation of the circle is \[x^2 + y^2 - 3x + 4y = 0\].

shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.6 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.6 | Q 16 | पृष्ठ ४०

संबंधित प्रश्न

Find the equation of the circle with:

Centre (ab) and radius\[\sqrt{a^2 + b^2}\]


Find the equation of the circle with:

Centre (a cos α, a sin α) and radius a.


Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


Find the centre and radius of each of the following circles:

(x + 5)2 + (y + 1)2 = 9


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.


Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.


Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.


Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


Show that the point (xy) given by  \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\]  lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.

 


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles:  x2 y2 − ax − by = 0


Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)


Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.


If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.


Find the equation of the circle the end points of whose diameter are the centres of the circles x2 + y2 + 6x − 14y − 1 = 0 and x2 + y2 − 4x + 10y − 2 = 0.


Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.


ABCD is a square whose side is a; taking AB and AD as axes, prove that the equation of the circle circumscribing the square is x2 + y2 − a (x + y) = 0.


Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


The equation x2 + y2 + 2x − 4y + 5 = 0 represents


The radius of the circle represented by the equation 3x2 + 3y2 + λxy + 9x + (λ − 6) y + 3 = 0 is


If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is


The equation of a circle with radius 5 and touching both the coordinate axes is


The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is


The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if


The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is


Equation of the circle through origin which cuts intercepts of length a and b on axes is


If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then


The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2, 3y = 4x, 2y = 3x is ______.


Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.


The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×