हिंदी

Abcd is a Square Whose Side is A; Taking Ab and Ad as Axes, Prove that the Equation of the Circle Circumscribing the Square is X2 + Y2 − a (X + Y) = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is a square whose side is a; taking AB and AD as axes, prove that the equation of the circle circumscribing the square is x2 + y2 − a (x + y) = 0.

उत्तर

Given:
ABCD is a square with side a units.
Let AB and AD represent the x-axis and the y-axis, respectively.
Thus, the coordinates of B and D are (a, 0) and (0, a), respectively.
The end points of the diameter of the circle circumscribing the square are B and D.
Thus, equation of the circle circumscribing the square is

\[\left( x - a \right)\left( x - 0 \right) + \left( y - 0 \right)\left( y - a \right) = 0\]  or  \[x^2 + y^2 - a\left( x + y \right) = 0\]
shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.3 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.3 | Q 9 | पृष्ठ ३७

संबंधित प्रश्न

Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.


Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.


A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.


Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.


If the lines 2x  3y = 5 and 3x − 4y = 7 are the diameters of a circle of area 154 square units, then obtain the equation of the circle.


If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k


Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2+ 5y = 18.


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7


Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.


Find the equation of the circle which passes through the points (3, 7), (5, 5) and has its centre on the line x − 4y = 1.


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.


Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.


Find the equation of the circle which circumscribes the triangle formed by the lines x + + 3 = 0, x − y + 1 = 0 and x = 3


Prove that the centres of the three circles x2 y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.


Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.


Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.


Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.


Find the equation of the circle concentric with x2 + y2 − 4x − 6y − 3 = 0 and which touches the y-axis.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


Find the equation of the circle the end points of whose diameter are the centres of the circles x2 + y2 + 6x − 14y − 1 = 0 and x2 + y2 − 4x + 10y − 2 = 0.


The line 2x − y + 6 = 0 meets the circle x2 + y2 − 2y − 9 = 0 at A and B. Find the equation of the circle on AB as diameter.


Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


If the radius of the circle x2 + y2 + ax + (1 − a) y + 5 = 0 does not exceed 5, write the number of integral values a.


The equation x2 + y2 + 2x − 4y + 5 = 0 represents


The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is


The equation of a circle with radius 5 and touching both the coordinate axes is


The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×