हिंदी

The Equation of a Circle with Radius 5 and Touching Both the Coordinate Axes is - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of a circle with radius 5 and touching both the coordinate axes is

विकल्प

  • x2 + y2 ± 10x ± 10y + 5 = 0

  • x2 + y2 ± 10x ± 10y = 0

  • x2 + y2 ± 10x ± 10y + 25 = 0

  • x2 + y2 ± 10x ± 10y + 51 = 0

MCQ

उत्तर

x2 + y2 ± 10x ± 10y + 25 = 0

Case I: If the circle lies in the first quadrant:
The equation of a circle that touches both the coordinate axes and has radius a is \[x^2 + y^2 - 2ax - 2ay + a^2 = 0\].

The given radius of the circle is 5 units, i.e.

\[a = 5\].

 Thus, the equation of the circle is \[x^2 + y^2 - 10x - 10y + 25 = 0\].

Case II: If the circle lies in the second quadrant:
The equation of a circle that touches both the coordinate axes and has radius a is \[x^2 + y^2 + 2ax - 2ay + a^2 = 0\].

The given radius of the circle is 5 units, i.e.

\[a = 5\].
  Thus, the equation of the circle is
\[x^2 + y^2 + 10x - 10y + 25 = 0\]
Case III: If the circle lies in the third quadrant:
The equation of a circle that touches both the coordinate axes and has radius a is
\[x^2 + y^2 + 2ax + 2ay + a^2 = 0\] .
The given radius of the circle is 5 units, i.e.
\[a = 5\].
 Thus, the equation of the circle is \[x^2 + y^2 + 10x + 10y + 25 = 0\].
Case IV: If the circle lies in the fourth quadrant:
The equation of a circle that touches both the coordinate axes and has radius a is \[x^2 + y^2 - 2ax + 2ay + a^2 = 0\].
The given radius of the circle is 5 units, i.e.
\[a = 5\].
 Thus, the equation of the circle is \[x^2 + y^2 - 10x + 10y + 25 = 0\].

Hence, the required equation of the circle is x2 + y2 ± 10x ± 10y + 25 = 0.

shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.6 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.6 | Q 14 | पृष्ठ ४०

संबंधित प्रश्न

Find the centre and radius of each of the following circles:

x2 + y2 − 4x + 6y = 5


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.


If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.


Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.


Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.


A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.


Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2+ 5y = 18.


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7


Find the coordinates of the centre and radius of the following circle:

1/2 (x2 + y2) + x cos θ + y sin θ − 4 = 0


Find the equation of the circle passing through the points:

 (5, −8), (−2, 9) and (2, 1)


Find the equation of the circle passing through the points:

 (0, 0), (−2, 1) and (−3, 2)


Find the equation of the circle which passes through the points (2, 3) and (4,5) and the centre lies on the straight line y − 4x + 3 = 0.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


Find the equation of the circle whose diameter is the line segment joining (−4, 3) and (12, −1). Find also the intercept made by it on y-axis.


The abscissae of the two points A and B are the roots of the equation x2 + 2ax − b2 = 0 and their ordinates are the roots of the equation x2 + 2px − q2 = 0. Find the equation of the circle with AB as diameter. Also, find its radius.


ABCD is a square whose side is a; taking AB and AD as axes, prove that the equation of the circle circumscribing the square is x2 + y2 − a (x + y) = 0.


Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.


Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.


If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.


If the radius of the circle x2 + y2 + ax + (1 − a) y + 5 = 0 does not exceed 5, write the number of integral values a.


Write the area of the circle passing through (−2, 6) and having its centre at (1, 2).


If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is


The radius of the circle represented by the equation 3x2 + 3y2 + λxy + 9x + (λ − 6) y + 3 = 0 is


The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is


If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval


Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is


Equation of the circle through origin which cuts intercepts of length a and b on axes is


Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×