हिंदी

The Equation of the Circle Passing Through the Point (1, 1) and Having Two Diameters Along the Pair of Lines X2 − Y2 −2x + 4y − 3 = 0, is - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is

विकल्प

  • x2 + y2 − 2x − 4y + 4 = 0

  •  x2 + y2 + 2x + 4y − 4 = 0

  • x2 + y2 − 2x + 4y + 4 = 0

  • none of these

MCQ

उत्तर

x2 + y2 − 2x − 4y + 4 = 0
Let the required equation of the circle be \[\left( x - h \right)^2 + \left( y - k \right)^2 = a^2\] .

Comparing the given equation x2 − y2 −2x + 4y − 3 = 0 with \[a x^2 + b y^2 + 2hxy + 2gx + 2fy + c = 0\] ,we get:

\[a = 1, b = - 1, h = 0, g = - 1, f = 2, c = - 3\]

Intersection point = \[\left( \frac{hf - bg}{ab - h^2}, \frac{gh - af}{ab - h^2} \right)\] = \[\left( \frac{- 1}{- 1}, \frac{- 2}{- 1} \right) = \left( 1, 2 \right)\]

Thus, the centre of the circle is \[\left( 1, 2 \right)\] .

The equation of the required circle is \[\left( x - 1 \right)^2 + \left( y - 2 \right)^2 = a^2\] .

Since circle passes through (1, 1), we have:

\[1 = a^2\]

∴ Equation of the required circle:

\[\left( x - 1 \right)^2 + \left( y - 2 \right)^2 = 1\]
\[\Rightarrow\] \[x^2 + y^2 - 2x - 4y + 4 = 0\]
shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.6 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.6 | Q 7 | पृष्ठ ३९

संबंधित प्रश्न

Find the equation of the circle with:

Centre (a cos α, a sin α) and radius a.


Find the centre and radius of each of the following circles:

x2 + y2 − 4x + 6y = 5


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.


Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.


A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.


Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2+ 5y = 18.


If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of  the circle.


One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles:  x2 + y2 + 6x − 8y − 24 = 0


Find the coordinates of the centre and radius of the following circle:

1/2 (x2 + y2) + x cos θ + y sin θ − 4 = 0


Find the coordinates of the centre and radius of each of the following circles:  x2 y2 − ax − by = 0


Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)


Find the equation of the circle which circumscribes the triangle formed by the lines 2x + y − 3 = 0, x + y − 1 = 0 and 3x + 2y − 5 = 0


Find the equation of the circle which circumscribes the triangle formed by the lines

 x + y = 2, 3x − 4y = 6 and x − y = 0.


Prove that the centres of the three circles x2 y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.


Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.


Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.


If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.


Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and - axes.


The line 2x − y + 6 = 0 meets the circle x2 + y2 − 2y − 9 = 0 at A and B. Find the equation of the circle on AB as diameter.


Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.


If the radius of the circle x2 + y2 + ax + (1 − a) y + 5 = 0 does not exceed 5, write the number of integral values a.


Write the area of the circle passing through (−2, 6) and having its centre at (1, 2).


If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are


The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is


If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is


The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is


The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is


If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =


Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is


If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then


The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2, 3y = 4x, 2y = 3x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×