हिंदी

The Equation of the Circle Passing Through the Origin Which Cuts off Intercept of Length 6 and 8 from the Axes is - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is

विकल्प

  • x2 + y2 − 12x − 16y = 0

  • x2 + y2 + 12x + 16y = 0

  • x2 + y2 + 6x + 8y = 0

  • x2 + y2 − 6x − 8y = 0

MCQ

उत्तर

x2 + y2 − 6x − 8y = 0

The centre of the required circle is \[\left( \frac{6}{2}, \frac{8}{2} \right) = \left( 3, 4 \right)\] .

The radius of the required circle is

\[\sqrt{3^2 + 4^2} = \sqrt{25} = 5\].
Hence, the equation of the circle is as follows:
\[\left( x - 3 \right)^2 + \left( y - 4 \right)^2 = 5^2\]
\[\Rightarrow\] \[x^2 + y^2 - 6x - 8y = 0\]
shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.6 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.6 | Q 15 | पृष्ठ ४०

संबंधित प्रश्न

Find the equation of the circle with:

Centre (0, −1) and radius 1.


Find the centre and radius of each of the following circles:

(x + 5)2 + (y + 1)2 = 9


Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).


Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.


If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k


One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7


Find the equation of the circle passing through the points:

 (5, −8), (−2, 9) and (2, 1)


Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.


Find the equation of the circle which circumscribes the triangle formed by the lines  y = x + 2, 3y = 4x and 2y = 3x.


Prove that the centres of the three circles x2 y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


Find the equation of the circle the end points of whose diameter are the centres of the circles x2 + y2 + 6x − 14y − 1 = 0 and x2 + y2 − 4x + 10y − 2 = 0.


Find the equation of the circle whose diameter is the line segment joining (−4, 3) and (12, −1). Find also the intercept made by it on y-axis.


The abscissae of the two points A and B are the roots of the equation x2 + 2ax − b2 = 0 and their ordinates are the roots of the equation x2 + 2px − q2 = 0. Find the equation of the circle with AB as diameter. Also, find its radius.


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


If the radius of the circle x2 + y2 + ax + (1 − a) y + 5 = 0 does not exceed 5, write the number of integral values a.


If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are


If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then its centre is ______. 


The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is


If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is


If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval


If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is


The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if


If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =


Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is


The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×