English

The Equation of the Circle Concentric with X2 + Y2 − 3x + 4y − C = 0 and Passing Through (−1, −2) is - Mathematics

Advertisements
Advertisements

Question

The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is

Options

  •  x2 + y2 − 3x + 4y − 1 = 0

  • x2 + y2 − 3x + 4y = 0

  • x2 + y2 − 3x + 4y + 2 = 0

  • none of these

MCQ

Solution

x2 + y2 − 3x + 4y = 0

The centre of the circle x2 + y2 − 3x + 4y − c = 0 is \[\left( \frac{3}{2}, - 2 \right)\].

Therefore, the centre of the required circle is \[\left( \frac{3}{2}, - 2 \right)\].

The equation of the circle is \[\left( x - \frac{3}{2} \right)^2 + \left( y + 2 \right)^2 = a^2\] ...(1)

Also, circle (1) passes through (−1, −2).

\[\therefore \left( - 1 - \frac{3}{2} \right)^2 + \left( - 2 + 2 \right)^2 = a^2\]

⇒ \[a = \frac{5}{2}\] 

Substituting the value of in equation (1):

\[\left( x - \frac{3}{2} \right)^2 + \left( y + 2 \right)^2 = \left( \frac{5}{2} \right)^2 \]

\[ \Rightarrow \frac{\left( 2x - 3 \right)^2}{4} + \left( y + 2 \right)^2 = \frac{25}{4}\]

\[ \Rightarrow \left( 2x - 3 \right)^2 + 4 \left( y + 2 \right)^2 = 25\]

\[ \Rightarrow x^2 + y^2 - 3x + 4y = 0\]

Hence, the required equation of the circle is \[x^2 + y^2 - 3x + 4y = 0\].

shaalaa.com
Circle - Standard Equation of a Circle
  Is there an error in this question or solution?
Chapter 24: The circle - Exercise 24.6 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 24 The circle
Exercise 24.6 | Q 16 | Page 40

RELATED QUESTIONS

Find the equation of the circle with:

Centre (−2, 3) and radius 4.


Find the equation of the circle with:

Centre (ab) and radius\[\sqrt{a^2 + b^2}\]


Find the centre and radius of each of the following circles:

(x + 5)2 + (y + 1)2 = 9


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


Find the equation of the circle whose centre lies on the positive direction of - axis at a distance 6 from the origin and whose radius is 4.


If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.


Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.


A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.


Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2+ 5y = 18.


One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles:  x2 + y2 + 6x − 8y − 24 = 0


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.


Find the equation of the circle which circumscribes the triangle formed by the lines  y = x + 2, 3y = 4x and 2y = 3x.


Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.


Find the equation of the circle which passes through the points (2, 3) and (4,5) and the centre lies on the straight line y − 4x + 3 = 0.


The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.


Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.


Find the equation of the circle whose diameter is the line segment joining (−4, 3) and (12, −1). Find also the intercept made by it on y-axis.


ABCD is a square whose side is a; taking AB and AD as axes, prove that the equation of the circle circumscribing the square is x2 + y2 − a (x + y) = 0.


The line 2x − y + 6 = 0 meets the circle x2 + y2 − 2y − 9 = 0 at A and B. Find the equation of the circle on AB as diameter.


Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


Write the area of the circle passing through (−2, 6) and having its centre at (1, 2).


The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is


If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is


If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is


The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is


The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then


The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2, 3y = 4x, 2y = 3x is ______.


The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×