मराठी

The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.

पर्याय

  • x2 + y2 = 9a2

  • x2 + y2 = 16a2

  • x2 + y2 = 4a2

  • x2 + y2 = a2

MCQ
रिकाम्या जागा भरा

उत्तर

The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is x2 + y2 = 4a2.

Explanation:

Let ABC be an equilateral triangle in which median AD = 3a.

Centre of the circle is same as the centroid of the triangle

i.e., (0, 0)

AG : GD = 2 : 1

So, AG = 23 AD = 23×3a=2a

∴ The equation of the circle is (x – 0)2 + (y – 0)2 = (2a)2

⇒ x2 + y2 = 4a2

shaalaa.com
Circle - Standard Equation of a Circle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Conic Sections - Exercise [पृष्ठ २०६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 11 Conic Sections
Exercise | Q 50 | पृष्ठ २०६

संबंधित प्रश्‍न

Find the equation of the circle with:

Centre (−2, 3) and radius 4.


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


If the line y = 3 x + k touches the circle x2 + y2 = 16, then find the value of k


Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2+ 5y = 18.


Show that the point (xy) given by  x=2at1+t2 and y=a(1t21+t2)  lies on a circle for all real values of t such that 1t1 where a is any given real number.

 


One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles:  x2 + y2 + 6x − 8y − 24 = 0


Find the coordinates of the centre and radius of each of the following circles:  x2 y2 − ax − by = 0


Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)


Find the equation of the circle which circumscribes the triangle formed by the lines 2x + y − 3 = 0, x + y − 1 = 0 and 3x + 2y − 5 = 0


Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.


If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.


Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.


Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.


Find the equations of the circles which pass through the origin and cut off equal chords of 2 units from the lines y = x and y = − x.


If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.


If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is


The equation x2 + y2 + 2x − 4y + 5 = 0 represents


The radius of the circle represented by the equation 3x2 + 3y2 + λxy + 9x + (λ − 6) y + 3 = 0 is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


If the point (λ, λ + 1) lies inside the region bounded by the curve x=25y2 and y-axis, then λ belongs to the interval


The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2, 3y = 4x, 2y = 3x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.