मराठी

Find the Equations of the Circles Touching Y-axis at (0, 3) and Making an Intercept of 8 Units on the X-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.

उत्तर

Case I: The centre lies in first quadrant.

Let the required equation be

\[\left( x - h \right)^2 + \left( y - k \right)^2 = a^2\]
Here, AB = 8 units and L (0, 3)
In \[\bigtriangleup\]CAM:
\[\Rightarrow C A^2 = C M^2 + A M^2\]
\[\Rightarrow C A^2 = 3^2 + 4^2 \]
\[ \Rightarrow CA = 5\]
\[ \Rightarrow CL = CA = 5\]
∴ Coordinates of the centre = \[\left( 5, 3 \right)\]
And, radius of the circle = 5
\[\left( x - 5 \right)^2 + \left( y - 3 \right)^2 = 25\]
\[x^2 + y^2 - 10x - 6y = - 9\]
Case II: The centre lies in the second quadrant.
Coordinates of the centre = \[\left( - 5, 3 \right)\]
And, radius of the circle= 5
\[\left( x + 5 \right)^2 + \left( y - 3 \right)^2 = 25\]
\[x^2 + y^2 + 10x - 6y = - 9\]
Hence, the equation of the required circle is
\[\left( x \pm 5 \right)^2 + \left( y - 3 \right)^2 = 25\]
\[x^2 + y^2 \pm 10x - 6y = - 9\]
shaalaa.com
Circle - Standard Equation of a Circle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: The circle - Exercise 24.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 24 The circle
Exercise 24.1 | Q 12 | पृष्ठ २१

संबंधित प्रश्‍न

Find the equation of the circle with:

Centre (−2, 3) and radius 4.


Find the equation of the circle with:

Centre (aa) and radius \[\sqrt{2}\]a.


Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


Find the centre and radius of each of the following circles:

(x + 5)2 + (y + 1)2 = 9


Find the centre and radius of each of the following circles:

x2 + y2 − 4x + 6y = 5


Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.


Find the equation of the circle whose centre lies on the positive direction of - axis at a distance 6 from the origin and whose radius is 4.


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


Find the equation of a circle
which touches both the axes and passes through the point (2, 1).


Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.


Find the coordinates of the centre and radius of each of the following circles:  x2 + y2 + 6x − 8y − 24 = 0


Find the coordinates of the centre and radius of each of the following circles:  x2 y2 − ax − by = 0


Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.


Find the equation of the circle which circumscribes the triangle formed by the lines x + + 3 = 0, x − y + 1 = 0 and x = 3


Find the equation of the circle which circumscribes the triangle formed by the lines  y = x + 2, 3y = 4x and 2y = 3x.


Find the equation of the circle concentric with x2 + y2 − 4x − 6y − 3 = 0 and which touches the y-axis.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.


Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.


Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).


Write the area of the circle passing through (−2, 6) and having its centre at (1, 2).


If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is


The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is


If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is


The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =


Equation of the circle through origin which cuts intercepts of length a and b on axes is


If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then


Equation of a circle which passes through (3, 6) and touches the axes is ______.


The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×