मराठी

Find the Equation of the Circle Concentric with X2 + Y2 − 4x − 6y − 3 = 0 and Which Touches the Y-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the circle concentric with x2 + y2 − 4x − 6y − 3 = 0 and which touches the y-axis.

उत्तर

Since, the circles are concentric.

\[\Rightarrow\] Centre of required circle = Centre of x2 + y2 − 4x − 6y − 3 = 0
The centre of the required circle is (2, 3).
We know that if a circle with centre (h, k) touches the y-axis, then h is the radius of the circle.
Thus, the radius is 2.
∴ Equation of the circle: \[\left( x - 2 \right)^2 + \left( y - 3 \right)^2 = 2^2\]
\[\Rightarrow x^2 + y^2 - 4x - 6y + 9 = 0\]
shaalaa.com
Circle - Standard Equation of a Circle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: The circle - Exercise 24.2 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 24 The circle
Exercise 24.2 | Q 13 | पृष्ठ ३२

संबंधित प्रश्‍न

Find the centre and radius of each of the following circles:

(x + 5)2 + (y + 1)2 = 9


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.


Find the equation of the circle whose centre lies on the positive direction of - axis at a distance 6 from the origin and whose radius is 4.


If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.


Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.


Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.


Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.


If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)


Find the equation of the circle passing through the points:

 (0, 0), (−2, 1) and (−3, 2)


Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.


Find the equation of the circle which circumscribes the triangle formed by the lines  y = x + 2, 3y = 4x and 2y = 3x.


Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.


If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.


Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.


Find the equation of the circle whose diameter is the line segment joining (−4, 3) and (12, −1). Find also the intercept made by it on y-axis.


Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


If the radius of the circle x2 + y2 + ax + (1 − a) y + 5 = 0 does not exceed 5, write the number of integral values a.


The equation x2 + y2 + 2x − 4y + 5 = 0 represents


The radius of the circle represented by the equation 3x2 + 3y2 + λxy + 9x + (λ − 6) y + 3 = 0 is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is


If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is


The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is


The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =


If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then


Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×