मराठी

If the Line Y = √ 3 X + K Touches the Circle X2 + Y2 = 16, Then Find the Value of K. - Mathematics

Advertisements
Advertisements

प्रश्न

If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k

उत्तर

The centre and the radius of the circle x2 + y2 = 16 are (0, 0) and 4
Now, the perpendicular distance from the centre of the circle to the tangent y = \[\sqrt{3}\] x + is equal to the radius of the circle

\[\therefore 4 = \left| \frac{\sqrt{3}\left( 0 \right) - 0 + k}{\sqrt{\left( \sqrt{3} \right)^2 + 1^2}} \right|\]
\[ \Rightarrow \pm 4 = \frac{k}{2}\]
\[ \Rightarrow k = \pm 8\]
shaalaa.com
Circle - Standard Equation of a Circle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: The circle - Exercise 24.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 24 The circle
Exercise 24.1 | Q 15 | पृष्ठ २१

संबंधित प्रश्‍न

Find the equation of the circle with:

Centre (0, −1) and radius 1.


Find the equation of the circle with:

Centre (aa) and radius \[\sqrt{2}\]a.


Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.


A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.


A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.


Show that the point (xy) given by  \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\]  lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.

 


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles:  x2 + y2 + 6x − 8y − 24 = 0


Find the coordinates of the centre and radius of the following circle:

1/2 (x2 + y2) + x cos θ + y sin θ − 4 = 0


Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.


Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.


Find the equation of the circle which circumscribes the triangle formed by the lines 2x + y − 3 = 0, x + y − 1 = 0 and 3x + 2y − 5 = 0


Find the equation of the circle which circumscribes the triangle formed by the lines

 x + y = 2, 3x − 4y = 6 and x − y = 0.


Find the equation of the circle which circumscribes the triangle formed by the lines  y = x + 2, 3y = 4x and 2y = 3x.


Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.


If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and - axes.


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


If the radius of the circle x2 + y2 + ax + (1 − a) y + 5 = 0 does not exceed 5, write the number of integral values a.


The radius of the circle represented by the equation 3x2 + 3y2 + λxy + 9x + (λ − 6) y + 3 = 0 is


The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


If the circles x2 + y2 = 9 and x2 + y2 + 8y + c = 0 touch each other, then c is equal to


If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then


Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×