मराठी

Find the Equations of the Circles Which Pass Through the Origin and Cut off Equal Chords of √ 2 Units from the Lines Y = X and Y = − X. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.

उत्तर

Suppose

\[a = \sqrt{2}\] From the figure, we see that there will be four circles that pass through the origin and cut off equal chords of length a from the straight lines \[y = \pm x\]
AB, BC, CD and DA are the diameters of the four circles.
Also,
\[C_1 A = \frac{a}{\sqrt{2}} = O C_1\] Thus, the coordinates of A are  \[\left( \frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}} \right)\]
In the same way, we can find the coordinates of BC and D as
\[\left( \frac{- a}{\sqrt{2}}, \frac{a}{\sqrt{2}} \right),\] \[\left( \frac{- a}{\sqrt{2}}, \frac{- a}{\sqrt{2}} \right)\] and
\[\left( \frac{a}{\sqrt{2}}, \frac{- a}{\sqrt{2}} \right)\], respectively.
The equation of the circle with AD as the diameter is
\[\left( x - \frac{a}{\sqrt{2}} \right)\left( x - \frac{a}{\sqrt{2}} \right) + \left( y - \frac{a}{\sqrt{2}} \right)\left( y + \frac{a}{\sqrt{2}} \right) = 0\], which can be rewritten as
\[x^2 + y^2 - \sqrt{2}ax = 0\] , i.e. \[x^2 + y^2 - 2x = 0\]
Similarly, the equations of the circles with BCCD and AB as the diameters are \[x^2 + y^2 + 2x = 0\]
\[x^2 + y^2 + 2y = 0\]  and  \[x^2 + y^2 - 2y = 0\], respectively.
shaalaa.com
Circle - Standard Equation of a Circle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: The circle - Exercise 24.3 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 24 The circle
Exercise 24.3 | Q 12 | पृष्ठ ३८

संबंधित प्रश्‍न

Find the equation of the circle with:

Centre (ab) and radius\[\sqrt{a^2 + b^2}\]


Find the equation of the circle with:

Centre (a cos α, a sin α) and radius a.


Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).


If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


Find the equation of a circle
which touches both the axes and passes through the point (2, 1).


Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.


A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.


A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2+ 5y = 18.


Show that the point (xy) given by  \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\]  lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.

 


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles:  x2 + y2 + 6x − 8y − 24 = 0


Find the equation of the circle which passes through the points (3, 7), (5, 5) and has its centre on the line x − 4y = 1.


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.


Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.


Find the equation of the circle which circumscribes the triangle formed by the lines

 x + y = 2, 3x − 4y = 6 and x − y = 0.


Find the equation of the circle which circumscribes the triangle formed by the lines  y = x + 2, 3y = 4x and 2y = 3x.


Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.


The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.


Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.


Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.


If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are


If the circles x2 + y2 = 9 and x2 + y2 + 8y + c = 0 touch each other, then c is equal to


If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is


The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is


Equation of the circle through origin which cuts intercepts of length a and b on axes is


If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then


Equation of a circle which passes through (3, 6) and touches the axes is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×