मराठी

Find the Equation of the Circle Circumscribing the Rectangle Whose Sides Are X − 3y = 4, 3x + Y = 22, X − 3y = 14 and 3x + Y = 62. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.

उत्तर

Given:
Sides of the rectangle:
x − 3y = 4     ...(1)
3x + y = 22   ...(2)
x − 3y = 14    ...(3)
And, 3x + y = 62    ...(4)

The intersection of (1) and (2) is (7, 1).
The intersection of (2) and (3) is (8, −2).
The intersection of (3) and (4) is (20, 2).
The intersection of (1) and (4) is (19, 5).
Hence, the vertices of the rectangle are (7, −1), (8, −2), (20, 2) and (19, 5).
The vertices of the diagonals are (7, −1), (20, 2) and (19, 5), (8, −2).
Thus, the required equation of the circle is

\[\left( x - 7 \right)\left( x - 20 \right) + \left( y - 1 \right)\left( y - 2 \right) = 0\] or
\[x^2 + y^2 - 27x - 3y + 142 = 0\]
shaalaa.com
Circle - Standard Equation of a Circle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: The circle - Exercise 24.3 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 24 The circle
Exercise 24.3 | Q 4 | पृष्ठ ३७

संबंधित प्रश्‍न

Find the equation of the circle with:

Centre (ab) and radius\[\sqrt{a^2 + b^2}\]


Find the equation of the circle with:

Centre (0, −1) and radius 1.


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.


Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2+ 5y = 18.


Show that the point (xy) given by  \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\]  lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.

 


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)


Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.


Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.


Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.


Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.


If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are


If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is


The equation x2 + y2 + 2x − 4y + 5 = 0 represents


If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then its centre is ______. 


The radius of the circle represented by the equation 3x2 + 3y2 + λxy + 9x + (λ − 6) y + 3 = 0 is


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is


The equation of a circle with radius 5 and touching both the coordinate axes is


The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is


The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if


The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is


If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =


Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is


If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then


The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×