English

Write the Coordinates of the Centre of the Circle Passing Through (0, 0), (4, 0) and (0, −6). - Mathematics

Advertisements
Advertisements

Question

Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).

Solution

We need to find the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).

Let the equation of the circle be \[\left( x - h \right)^2 + \left( y - k \right)^2 = a^2\] .

Putting x = y = 0:

\[h^2 + k^2 = a^2\]    ...(1)

Putting x = 4, y = 0 in the equation of the circle:

\[\left( 4 - h \right)^2 + \left( 0 - k \right)^2 = a^2 \]

\[ \Rightarrow 16 + h^2 - 8h + k^2 = a^2 \]

\[ \Rightarrow 16 - 8h + a^2 = a^2 \left( \text
{ From } (1) \right)\]

\[ \Rightarrow h = 2\]

Putting x = 0, y = −6 in the equation of the circle:

\[\left( 0 - h \right)^2 + \left( - 6 - k \right)^2 = a^2 \]

\[ \Rightarrow 36 + h^2 + 12k + k^2 = a^2 \]

\[ \Rightarrow 36 + 12k + a^2 = a^2 \left( \text { From } (1) \right)\]

\[ \Rightarrow k = - 3\]

Hence, the centre of the circle is \[\left( 2, - 3 \right)\] .

shaalaa.com
Circle - Standard Equation of a Circle
  Is there an error in this question or solution?
Chapter 24: The circle - Exercise 24.4 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 24 The circle
Exercise 24.4 | Q 2 | Page 38

RELATED QUESTIONS

Find the equation of the circle with:

Centre (ab) and radius\[\sqrt{a^2 + b^2}\]


Find the equation of the circle with:

Centre (0, −1) and radius 1.


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.


A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.


One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of the following circle:

1/2 (x2 + y2) + x cos θ + y sin θ − 4 = 0


Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)


Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.


Find the equation of the circle which passes through the points (3, 7), (5, 5) and has its centre on the line x − 4y = 1.


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.


Find the equation of the circle which circumscribes the triangle formed by the lines x + + 3 = 0, x − y + 1 = 0 and x = 3


Find the equation of the circle which circumscribes the triangle formed by the lines

 x + y = 2, 3x − 4y = 6 and x − y = 0.


Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.


Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.


Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.


Find the equation of the circle concentric with x2 + y2 − 4x − 6y − 3 = 0 and which touches the y-axis.


Find the equation of the circle the end points of whose diameter are the centres of the circles x2 + y2 + 6x − 14y − 1 = 0 and x2 + y2 − 4x + 10y − 2 = 0.


The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.


Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and - axes.


The line 2x − y + 6 = 0 meets the circle x2 + y2 − 2y − 9 = 0 at A and B. Find the equation of the circle on AB as diameter.


If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are


If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is


The equation x2 + y2 + 2x − 4y + 5 = 0 represents


If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then its centre is ______. 


If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is


The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is


The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to


Equation of the circle through origin which cuts intercepts of length a and b on axes is


If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then


The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2, 3y = 4x, 2y = 3x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×