Advertisements
Advertisements
Question
Find the linear inequations for which the shaded area in Fig. 15.41 is the solution set. Draw the diagram of the solution set of the linear inequations:
Solution
Considering the line 2x + 3y = 6, we find that the shaded region and the origin (0, 0) are on the opposite side of this line and (0, 0) does not satisfy the inequation 2x + 3y\[\geq\]6 So, the first inequation is 2x + 3y\[\geq\]6
Considering the line 4x + 6y = 24, we find that the shaded region and the origin (0, 0) are on the same side of this line and (0, 0) satisfies the inequation 4x + 6y\[\leq\]24 So, the corresponding inequation is 4x + 6y \[\leq\] 24 Considering the line x \[-\]2y = 2, we find that the shaded region and the origin (0, 0) are on the same side of this line and (0, 0) satisfies the inequation x \[-\]2y\[\leq\] 2 So, the corresponding inequation is x\[-\] 2y\[\leq\]2Considering the line\[-\]3x + 2y = 3, we find that the shaded region and the origin (0, 0) are on the same side of this line and (0, 0) satisfies the inequation\[-\]3x + 2y\[\leq\]3 So, the corresponding inequation is\[-\]3x + 2y\[\leq\]3 Also, the shaded region is in the first quadrant. Therefore, we must have x \[\geq 0 \text{ and } y \geq 0\]Thus, the linear inequations comprising the given solution set are given below:
2x + 3y\[\geq\] 6, 4x + 6y\[\leq\] 24, x\[-\]2y\[\leq\]2,\[-\]3x + 2y\[\leq\] 3, x\[\geq 0 \text{ and } y \geq 0\]
APPEARS IN
RELATED QUESTIONS
Solve the given inequality graphically in two-dimensional plane: x + y < 5
Solve the given inequality graphically in two-dimensional plane: 2x + y ≥ 6
Solve the given inequality graphically in two-dimensional plane: y + 8 ≥ 2x
Solve the given inequality graphically in two-dimensional plane: 2x – 3y > 6
Solve the given inequality graphically in two-dimensional plane: x > –3
Solve the inequalities and represent the solution graphically on number line:
5x + 1 > –24, 5x – 1 < 24
Solve the inequality and represent the solution graphically on number line:
2(x – 1) < x + 5, 3(x + 2) > 2 – x
Solve the inequalities and represent the solution graphically on number line:
5(2x – 7) – 3(2x + 3) ≤ 0, 2x + 19 ≤ 6x + 47
A solution of 8% boric acid is to be diluted by adding a 2% boric acid solution to it. The resulting mixture is to be more than 4% but less than 6% boric acid. If we have 640 litres of the 8% solution, how many litres of the 2% solution will have to be added?
How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content?
Solve the following systems of linear inequation graphically:
2x + 3y ≤ 6, 3x + 2y ≤ 6, x ≥ 0, y ≥ 0
Solve the following systems of linear inequation graphically:
2x + 3y ≤ 6, x + 4y ≤ 4, x ≥ 0, y ≥ 0
Solve the following systems of linear inequations graphically:
x − y ≤ 1, x + 2y ≤ 8, 2x + y ≥ 2, x ≥ 0, y ≥ 0
Solve the following systems of linear inequations graphically:
x + y ≥ 1, 7x + 9y ≤ 63, x ≤ 6, y ≤ 5, x ≥ 0, y ≥ 0
Solve the following systems of linear inequations graphically:
2x + 3y ≤ 35, y ≥ 3, x ≥ 2, x ≥ 0, y ≥ 0
Show that the solution set of the following linear inequations is empty set:
x − 2y ≥ 0, 2x − y ≤ −2, x ≥ 0, y ≥ 0
Find the linear inequations for which the solution set is the shaded region given in Fig. 15.42
Solve the following systems of inequations graphically:
12x + 12y ≤ 840, 3x + 6y ≤ 300, 8x + 4y ≤ 480, x ≥ 0, y ≥ 0
Solve the following systems of inequations graphically:
5x + y ≥ 10, 2x + 2y ≥ 12, x + 4y ≥ 12, x ≥ 0, y ≥ 0
Show that the following system of linear equations has no solution:
\[x + 2y \leq 3, 3x + 4y \geq 12, x \geq 0, y \geq 1\]
Show that the solution set of the following system of linear inequalities is an unbounded region:
\[2x + y \geq 8, x + 2y \geq 10, x \geq 0, y \geq 0\]
Mark the correct alternative in each of the following:
If x\[<\]7, then
Write the solution of the inequation\[\frac{x^2}{x - 2} > 0\]
State which of the following statement is True or False.
If xy > 0, then x < 0 and y < 0
Graph of x < 3 is
Graph of x ≥ 0 is
Graph of y ≤ 0 is
Solution set of x + y ≥ 0 is