Advertisements
Advertisements
Question
Find the nth derivative of cos 5x.cos 3x.cos x.
Solution
let y =` cos 5x.cos 3x.cos x`
= `(cos(5x-3x)+cos(5x+3x))/2. cos x`
=`1/2[cos 2x.cos x+cos x+cos8x.cos x]`
`y =1/4[cos 3x+cos x +cos 9x +cos 7x]`
Take n th derivative,
๐ ๐๐ ๐ ๐๐๐๐๐๐๐๐๐ ๐๐ ๐๐๐ `(ax+b)=a^n cos ((npi)/2+ax+b)`
`y_n=1/4[9cos((npi)/2+3x)+cos((npi)/2+x)+81cos((npi)/2+9x)+49cos((npi)/2+7x)`
APPEARS IN
RELATED QUESTIONS
If `cos alpha cos beta=x/2, sinalpha sinbeta=y/2`, prove that:
`sec(alpha -ibeta)+sec(alpha-ibeta)=(4x)/(x^2-y^2)`
If `z =log(e^x+e^y) "show that rt" - s^2 = 0 "where r"= (del^2z)/(delx^2),t=(del^2z)/(dely^2)"s"=(del^2z)/(delx dely)`
If Z=tan^1 (x/y), where` x=2t, y=1-t^2, "prove that" d_z/d_t=2/(1+t^2).`
Evaluate : `Lim_(x→0) (x)^(1/(1-x))`
If x = uv, y `=(u+v)/(u-v).`find `(del(u,v))/(del(x,y))`.
If `y=2^xsin^2x cosx` find `y_n`
If `u=x^2+y^2+z^2` where `x=e^t, y=e^tsint,z=e^tcost`
Prove that `(du)/(dt)=4e^(2t)`