Advertisements
Advertisements
Question
Evaluate : `Lim_(x→0) (x)^(1/(1-x))`
Solution
Let ` L= Lim_(x→0) (x)^(1/(1-x)`
Take log on both the sides,
∴ `Log L = Lim_(x→0) log x/(1-x)`
Apply L’Hospital rule ,
∴ `log L = Lim_(x→0)1/x`
=0
∴ `L=e^0=1`
shaalaa.com
Review of Complex Numbers‐Algebra of Complex Number
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
If `cos alpha cos beta=x/2, sinalpha sinbeta=y/2`, prove that:
`sec(alpha -ibeta)+sec(alpha-ibeta)=(4x)/(x^2-y^2)`
If `z =log(e^x+e^y) "show that rt" - s^2 = 0 "where r"= (del^2z)/(delx^2),t=(del^2z)/(dely^2)"s"=(del^2z)/(delx dely)`
If Z=tan^1 (x/y), where` x=2t, y=1-t^2, "prove that" d_z/d_t=2/(1+t^2).`
Find the nth derivative of cos 5x.cos 3x.cos x.
If x = uv, y `=(u+v)/(u-v).`find `(del(u,v))/(del(x,y))`.
If `y=2^xsin^2x cosx` find `y_n`
If `u=x^2+y^2+z^2` where `x=e^t, y=e^tsint,z=e^tcost`
Prove that `(du)/(dt)=4e^(2t)`