Advertisements
Advertisements
Question
If Z=tan^1 (x/y), where` x=2t, y=1-t^2, "prove that" d_z/d_t=2/(1+t^2).`
Solution
`Z=tan ^-1(x/y)` `x=2t and y=1-t^2`
∴ z is the function of x and y & x and y are the functions of t.
`Z→ tanf(x,y)→f(t)`
`Z = tan^-1 ((2t)/(1-t^2))`
Direct differentiate w.r.t t ,
`d_z/d_t=1/(1+((2t)/(1-t^2))^2xxd/dt((2t)/(1-t^2))`
=`2(1-t^2)^2/((1-t^2)^2+4t^2)xx[t.(1)/(1-t^2)^2(-2t)+1/(1-t^2)xx1]`
=` (2(1-t^2)^2)/(1+t^2)xx1/(1-t^2)^2`
∴ `d_z/d_t=2/(1+t^2)`
Hence Proved.
APPEARS IN
RELATED QUESTIONS
If `cos alpha cos beta=x/2, sinalpha sinbeta=y/2`, prove that:
`sec(alpha -ibeta)+sec(alpha-ibeta)=(4x)/(x^2-y^2)`
If `z =log(e^x+e^y) "show that rt" - s^2 = 0 "where r"= (del^2z)/(delx^2),t=(del^2z)/(dely^2)"s"=(del^2z)/(delx dely)`
Find the nth derivative of cos 5x.cos 3x.cos x.
Evaluate : `Lim_(x→0) (x)^(1/(1-x))`
If x = uv, y `=(u+v)/(u-v).`find `(del(u,v))/(del(x,y))`.
If `y=2^xsin^2x cosx` find `y_n`
If `u=x^2+y^2+z^2` where `x=e^t, y=e^tsint,z=e^tcost`
Prove that `(du)/(dt)=4e^(2t)`