Advertisements
Advertisements
Question
If `cos alpha cos beta=x/2, sinalpha sinbeta=y/2`, prove that:
`sec(alpha -ibeta)+sec(alpha-ibeta)=(4x)/(x^2-y^2)`
Solution
`cos alpha cos beta=x/2 and sinalpha sinbeta=y/2`................(given)
`sec(alpha -ibeta)=1/(cos(alpha-ibeta))=1/((cos alpha cos ibeta+sinalpha sinibeta)/(cos alpha cos h beta+i sinalpha sinhbeta)) 1/(x/2+(iy)/2)` = `2/(x+iy)`..................(1)
`sec(alpha -ibeta) = 2/(x+iy)`..................(2)
from (1) and (2)
`sec(alpha -ibeta)+sec(alpha-i beta-i beta)=2/(x+iy)+2/(x+iy)=(4x)/(x^2-y^2) `
APPEARS IN
RELATED QUESTIONS
If `z =log(e^x+e^y) "show that rt" - s^2 = 0 "where r"= (del^2z)/(delx^2),t=(del^2z)/(dely^2)"s"=(del^2z)/(delx dely)`
If Z=tan^1 (x/y), where` x=2t, y=1-t^2, "prove that" d_z/d_t=2/(1+t^2).`
Find the nth derivative of cos 5x.cos 3x.cos x.
Evaluate : `Lim_(x→0) (x)^(1/(1-x))`
If x = uv, y `=(u+v)/(u-v).`find `(del(u,v))/(del(x,y))`.
If `y=2^xsin^2x cosx` find `y_n`
If `u=x^2+y^2+z^2` where `x=e^t, y=e^tsint,z=e^tcost`
Prove that `(du)/(dt)=4e^(2t)`