Advertisements
Advertisements
Question
If `y=2^xsin^2x cosx` find `y_n`
Solution
`2^x=e(xlog2)=e(ax)` where a = log2
`(2sin^2x cosx)/2=(sin^1x cosx.sinx xx2)/2= (sinx.sin2x)/2 = (2sinx.sin2x)/(2xx2)=cosx/4-(cos3x)/4`
`therefore sin^2x cosx=(cosx)/4-(cos3x)/4`
`Y=(e^(ax)cosx)/4-(e^(ax)cos3x)/4`
`y_n=1//4 r^n ""_1 e^(ax) cos(x+"n"varphi_1)-1//4 r^n""_2e^(ax) cos(3x+n varphi_2)`
`y_n=1//4r^n""_1 2^(1x)cos(x+nvarphi_1)-1//4r^n""_2 2^(1x)cos(3x+nvarphi_2)`
`r_1=sqrt((log2)^2)+1` `r_2=sqrt((log2)^2)+3^2`
`varphi_1 = tan^(-1)[1/(log2)]` `varphi_2=tan^(-1)[3/(1og2)]`
APPEARS IN
RELATED QUESTIONS
If `cos alpha cos beta=x/2, sinalpha sinbeta=y/2`, prove that:
`sec(alpha -ibeta)+sec(alpha-ibeta)=(4x)/(x^2-y^2)`
If `z =log(e^x+e^y) "show that rt" - s^2 = 0 "where r"= (del^2z)/(delx^2),t=(del^2z)/(dely^2)"s"=(del^2z)/(delx dely)`
If Z=tan^1 (x/y), where` x=2t, y=1-t^2, "prove that" d_z/d_t=2/(1+t^2).`
Find the nth derivative of cos 5x.cos 3x.cos x.
Evaluate : `Lim_(x→0) (x)^(1/(1-x))`
If x = uv, y `=(u+v)/(u-v).`find `(del(u,v))/(del(x,y))`.
If `u=x^2+y^2+z^2` where `x=e^t, y=e^tsint,z=e^tcost`
Prove that `(du)/(dt)=4e^(2t)`