Advertisements
Advertisements
Question
`"Find the ratio in which the poin "p (3/4 , 5/12) " divides the line segment joining the points "A (1/2,3/2) and B (2,-5).`
Solution
`"Let k : 1 be the ratio in which the point "p (3/4 , 5/12) " divides the line segment joining the points "A (1/2,3/2) and B (2,-5).` Then
`(3/4 , 5/12) = ((k(2)+1/2)/(k+1) , (k(-5)+2/2)/(k+1))`
` ⇒(k (2) +1/2)/(k+1) = 3/4 and (k(-5) +3/2) /(k+1) = 5/12`
`⇒ 8k+2=3k+3 and -60k +18 = 5k +5`
`⇒k=1/5 and k = 1/5 `
Hence, the required ratio is1:5
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the point which divides the line segment joining (−1,3) and (4, −7) internally in the ratio 3 : 4
Find the ratio in which the point (2, y) divides the line segment joining the points A (-2,2) and B (3, 7). Also, find the value of y.
Prove that the points (4, 5) (7, 6), (6, 3) (3, 2) are the vertices of a parallelogram. Is it a rectangle.
Find the area of quadrilateral PQRS whose vertices are P(-5, -3), Q(-4,-6),R(2, -3) and S(1,2).
Find the area of quadrilateral ABCD whose vertices are A(-3, -1), B(-2,-4) C(4,-1) and D(3,4)
Find the centroid of ΔABC whose vertices are A(2,2) , B (-4,-4) and C (5,-8).
A point whose abscissa is −3 and ordinate 2 lies in
If the points A(−2, 1), B(a, b) and C(4, −1) ae collinear and a − b = 1, find the values of aand b.
Write the coordinates of the point dividing line segment joining points (2, 3) and (3, 4) internally in the ratio 1 : 5.
Write the coordinates the reflections of points (3, 5) in X and Y -axes.
If the centroid of the triangle formed by the points (a, b), (b, c) and (c, a) is at the origin, then a3 + b3 + c3 =
If the points P (x, y) is equidistant from A (5, 1) and B (−1, 5), then
In Fig. 14.46, the area of ΔABC (in square units) is
If A(x, 2), B(−3, −4) and C(7, −5) are collinear, then the value of x is
Find the coordinates of point A, where AB is a diameter of the circle with centre (–2, 2) and B is the point with coordinates (3, 4).
Ordinate of all points on the x-axis is ______.
The points whose abscissa and ordinate have different signs will lie in ______.
Find the coordinates of the point which lies on x and y axes both.
A tiling or tessellation of a flat surface is the covering of a plane using one or more geometric shapes, called tiles, with no overlaps and no gaps. Historically, tessellations were used in ancient Rome and in Islamic art. You may find tessellation patterns on floors, walls, paintings etc. Shown below is a tiled floor in the archaeological Museum of Seville, made using squares, triangles and hexagons.
A craftsman thought of making a floor pattern after being inspired by the above design. To ensure accuracy in his work, he made the pattern on the Cartesian plane. He used regular octagons, squares and triangles for his floor tessellation pattern
Use the above figure to answer the questions that follow:
- What is the length of the line segment joining points B and F?
- The centre ‘Z’ of the figure will be the point of intersection of the diagonals of quadrilateral WXOP. Then what are the coordinates of Z?
- What are the coordinates of the point on y-axis equidistant from A and G?
OR
What is the area of Trapezium AFGH?
Assertion (A): Mid-point of a line segment divides the line segment in the ratio 1 : 1
Reason (R): The ratio in which the point (−3, k) divides the line segment joining the points (− 5, 4) and (− 2, 3) is 1 : 2.