Advertisements
Advertisements
Question
Find the area of triangles whose vertices are L(1, 1), M(−2, 2), N(5, 4)
Solution
Here, L(x1, y1) ≡ L(1, 1), M(x2, y2) ≡ M(–2, 2), N(x3, y3) ≡ N(5, 4)
Area of a triangle = `1/2|(x_1, y_1, 1),(x_2, y_2, 1),(x_3, y_3, 1)|`
∴ A(ΔLMN) = `1/2|(1, 1, 1),(-2, 2, 1),(5, 4, 1)|`
= `1/2[1(2 - 4) - 1 (-2 - 5) + 1 (- 8 - 10)]`
= `1/2[1(-2) - 1( - 7) + 1 (- 18)]`
= `1/2(-2 + 7 - 18)`
= `-13/2`
Since, area cannot be negative.
∴ A(ΔLMN) = `13/2` sq. units
APPEARS IN
RELATED QUESTIONS
Find the area of the triangle whose vertices are: (4, 5), (0, 7), (–1, 1)
Find the area of the triangle whose vertices are: (3, 2), (–1, 5), (–2, –3)
Find the value of k, if the area of the triangle with vertices at A(k, 3), B(–5, 7), C(–1, 4) is 4 square units.
Find the area of the quadrilateral whose vertices are A(–3, 1), B(–2, –2), C(4, 1), D(2, 3).
Find the value of k, if area of ΔPQR is 4 square units and vertices are P(k, 0), Q(4, 0), R(0, 2).
Find the value of k, if area of ΔLMN is `33/2` square units and vertices are L(3, − 5), M(− 2, k), N(1, 4).
Find the values of 'K' if area of triangle is 4 square units and vertices are (k, 0), (4, 0), (0, 2).
What will the equation of line joining (1, 2) and (3, 6) using determinants
If the area of triangle is 35 square units with vertices (2, – 6), (5, 4) and (k, 4) then k is
If Δ = `|(1, 2, 3),(2, -1, 0),(3, 4, 5)|`, then `|(1, 6, 3),(4, -6, 0),(3, 12, 5)|` is
Find the area of triangle whose vertices are A ( -1,2), B (2,4), C (0,0)
Find the area of triangle whose vertices are A ( -1,2) ,B (2,4) ,C (0,0)
Find the area of triangle whose vertices are A(-1,2), B(2,4), C(0,0)
Find the area of triangle whose vertices are A( -1, 2), B(2, 4), C(0, 0).
Find the area of triangle whose vertices are A(-1, 2), B(2, 4), C(0, 0).
Find the area of triangle whose vertices are A(-1, 2), B(2, 4), C(0, 0)
Find the area of triangle whose vertices are A(-1, 2), B(2, 4), C(0, 0).
Find the area of triangle whose vertices are A (-1, 2), B (2, 4), C (0, 0).