Advertisements
Advertisements
Question
Find the distance between the parallel lines
3x − 4y + 5 = 0 and 6x − 8y − 15 = 0
Solution
3x – 4y + 5 = 0 and 6x – 8y – 15 = 0
The equation of the given lines are
3x – 4y + 5 = 0 ......(1)
6x – 8y – 15 = 0
3x – 4y – 1 = 0 ......(2)
The distance between the parallel lines (1) and (2) is
d = `(5 - ( - 15/2))/sqrt(3^2 + (- 4)^2`
= `(5 + 15/2)/sqrt(9 + 16)`
= `(10 + 15)/(2sqrt(25))`
= `25/(2 xx 5)`
= `5/2`
APPEARS IN
RELATED QUESTIONS
Find the distance between the line 4x + 3y + 4 = 0, and a point (7, −3)
Write the equation of the lines through the point (1, −1) perpendicular to 3x + 4y = 6
Find the equation of the lines passing through the point of intersection lines 4x − y + 3 = 0 and 5x + 2y + 7 = 0, and through the point (−1, 2)
Find the equation of the lines passing through the point of intersection lines 4x − y + 3 = 0 and 5x + 2y + 7 = 0, and parallel to x − y + 5 = 0
Find the equation of the lines passing through the point of intersection lines 4x − y + 3 = 0 and 5x + 2y + 7 = 0, and perpendicular to x − 2y + 1 = 0
Find the equations of two straight lines which are parallel to the line 12x + 5y + 2 = 0 and at a unit distance from the point (1, −1)
Find the equations of straight lines which are perpendicular to the line 3x + 4y − 6 = 0 and are at a distance of 4 units from (2, 1)
Find the equation of a straight line parallel to 2x + 3y = 10 and which is such that the sum of its intercepts on the axes is 15
Find the length of the perpendicular and the co-ordinates of the foot of the perpendicular from (−10, −2) to the line x + y − 2 = 0
If p1 and p2 are the lengths of the perpendiculars from the origin to the straight lines x sec θ + y cosec θ = 2a and x cos θ – y sin θ = a cos 2θ, then prove that p12 + p22 = a2
Find the distance between the parallel lines
12x + 5y = 7 and 12x + 5y + 7 = 0
If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then find the equation of the line in new position
Find atleast two equations of the straight lines in the family of the lines y = 5x + b, for which b and the x-coordinate of the point of intersection of the lines with 3x − 4y = 6 are integers
Choose the correct alternative:
The intercepts of the perpendicular bisector of the line segment joining (1, 2) and (3, 4) with coordinate axes are
Choose the correct alternative:
The point on the line 2x − 3y = 5 is equidistance from (1, 2) and (3, 4) is
Choose the correct alternative:
If a vertex of a square is at the origin and its one side lies along the line 4x + 3y − 20 = 0, then the area of the square is
Choose the correct alternative:
θ is acute angle between the lines x2 – xy – 6y2 = 0 then `(2costheta + 3sintheta)/(4costheta + 5costheta)`