Advertisements
Advertisements
Question
Find the equation of the following circles having the centre (3, 5) and radius 5 units.
Solution
Equation of the circle is (x – h)2 + (y – k)2 = r2
Centre (h, k) = (3, 5) and radius r = 5
∴ Equation of the circle is (x – 3)2 + (y – 5)2 = 52
⇒ x2 – 6x + 9 + y2 – 10y + 25 = 25
⇒ x2 + y2 – 6x – 10y + 9 = 0
APPEARS IN
RELATED QUESTIONS
Find the equation of the circle having (4, 7) and (-2, 5) as the extremities of a diameter.
The equation of the circle with centre on the x axis and passing through the origin is:
If the circle touches the x-axis, y-axis, and the line x = 6 then the length of the diameter of the circle is:
Find the equation of the tangent and normal to the circle x2 + y2 – 6x + 6y – 8 = 0 at (2, 2)
Determine whether the points (– 2, 1), (0, 0) and (– 4, – 3) lie outside, on or inside the circle x2 + y2 – 5x + 2y – 5 = 0
Find centre and radius of the following circles
x2 + y2 + 6x – 4y + 4 = 0
Choose the correct alternative:
The circle x2 + y2 = 4x + 8y + 5 intersects the line 3x – 4y = m at two distinct points if
Choose the correct alternative:
The length of the diameter of the circle which touches the x -axis at the point (1, 0) and passes through the point (2, 3)
Choose the correct alternative:
The radius of the circle passing through the points (6, 2) two of whose diameter are x + y = 6 and x + 2y = 4 is
Choose the correct alternative:
If the coordinates at one end of a diameter of the circle x2 + y2 – 8x – 4y + c = 0 are (11, 2) the coordinates of the other end are