Advertisements
Advertisements
Question
Find the linear inequalities for which the shaded region in the given figure is the solution set.
Solution
Considering x + y = 8, the shaded region and the origin both are on the same side of the graph of the line and (0, 0) satisfy the constraint x + y ≤ 8.
Considering x + y = 4, the origin is on the opposite side of the shaded region and (0, 0), Hence, doesn’t satisfy the constraint x + y ≥ 4. Therefore required constraint is x + y ≥ 4.
We see that, The shaded region is in the first quadrant i.e. x ≥ 0 and y ≥ 0, Also, shades region is below the line y = 5 and left to the line x = 5.
⇒ y ≤ 5 and x ≥ 5
Hence, the linear inequalities are x + y ≤ 8, x + y ≥ 4, x ≥ 0, y ≥ 0, x ≤ 5, y ≤ 5.
APPEARS IN
RELATED QUESTIONS
Solve the following system of inequalities graphically: x ≥ 3, y ≥ 2
Solve the following system of inequalities graphically: 2x + y≥ 6, 3x + 4y ≤ 12
Solve the following system of inequalities graphically: 2x – y > 1, x – 2y < –1
Solve the following system of inequalities graphically: x + y ≤ 9, y > x, x ≥ 0
Solve the following system of inequalities graphically: 3x + 4y ≤ 60, x + 3y ≤ 30, x ≥ 0, y ≥ 0
Solve the following system of inequalities graphically: 2x + y≥ 4, x + y ≤ 3, 2x – 3y ≤ 6
Solve the following system of inequalities graphically: x – 2y ≤ 3, 3x + 4y ≥ 12, x ≥ 0, y ≥ 1
Solve the following system of inequalities graphically: 3x + 2y ≤ 150, x + 4y ≤ 80, x ≤ 15, y ≥ 0, x ≥ 0
Find all pairs of consecutive odd positive integers, both of which are smaller than 10, such that their sum is more than 11.
Find all pairs of consecutive even positive integers, both of which are larger than 5, such that their sum is less than 23.
To receive grade 'A' in a course, one must obtain an average of 90 marks or more in five papers each of 100 marks. If Shikha scored 87, 95, 92 and 94 marks in first four paper, find the minimum marks that she must score in the last paper to get grade 'A' in the course.
A company manufactures cassettes and its cost and revenue functions for a week are \[C = 300 + \frac{3}{2}x \text{ and } R = 2x\] respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold for the company to realize a profit?
How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content?
A solution of 8% boric acid is to be diluted by adding a 2% boric acid solution to it. The resulting mixture is to be more than 4% but less than 6% boric acid. If there are 640 litres of the 8% solution, how many litres of 2% solution will have to be added?
Write the solution set of the inequation \[\left| \frac{1}{x} - 2 \right| > 4\]
Find the graphical solution of the following system of linear inequations:
2x + 3y ≥ 12, – x + y ≤ 3, x ≤ 4, y ≥ 3
Solve the following system of inequalities graphically.
2x – y ≥ 1, x – 2y ≤ – 1
Find the linear inequalities for which the shaded region in the given figure is the solution set.
Solve the following system of inequalities `(2x + 1)/(7x - 1) > 5, (x + 7)/(x - 8) > 2`
Solve the following system of linear inequalities:
3x + 2y ≥ 24, 3x + y ≤ 15, x ≥ 4
Show that the solution set of the following system of linear inequalities is an unbounded region 2x + y ≥ 8, x + 2y ≥ 10, x ≥ 0, y ≥ 0.
Solution set of x ≥ 0 and y ≤ 0 is
Solution set of x ≥ 0 and y ≤ 1 is