English

Find the linear inequalities for which the shaded region in the given figure is the solution set. - Mathematics

Advertisements
Advertisements

Question

Find the linear inequalities for which the shaded region in the given figure is the solution set.

Sum

Solution

  1. Consider 2x + 3y = 3. We observe that the shaded region and the origin lie on opposite side of this line and (0, 0) satisfies 2x + 3y ≤ 3. Therefore, we must have 2x + 3y ≥ 3 as linear inequality corresponding to the line 2x + 3y = 3.
  2. Consider 3x + 4y = 18. We observe that the shaded region and the origin lie on the same side of this line and (0, 0) satisfies 3x + 4y ≤ 18. Therefore, 3x + 4y ≤ 18 is the linear inequality corresponding to the line 3x + 4y = 18.
  3. Consider –7x + 4y = 14. It is clear from the figure that the shaded region and the origin lie on the same side of this line and (0, 0) satisfies the inequality –7x + 4y ≤ 14. Therefore, –7x + 4y ≤ 14 is the inequality corresponding to the line –7x + 4y = 14.
  4. Consider x – 6y = 3. It may be noted that the shaded portion and origin lie on the same side of this line and (0, 0) satisfies x – 6y ≤ 3. Therefore, x – 6y ≤ 3 is the inequality corresponding to the line x – 6y = 3.
  5. Also the shaded region lies in the first quadrant only. Therefore, x ≥ 0, y ≥ 0. Hence, in view of (i), (ii), (iii), (iv) and (v) above, the linear inequalities corresponding to the given solution set are: 2x + 3y ≥ 3, 3x + 4y ≤ 18 –7x + 4y ≤14, x – 6y ≤ 3, x ≥ 0, y ≥ 0.
shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Linear Inequalities - Solved Examples [Page 104]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 6 Linear Inequalities
Solved Examples | Q 9 | Page 104

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the following system of inequalities graphically: 2x – y > 1, x – 2y < –1


Solve the following system of inequalities graphically: 2x + y≥ 8, x + 2y ≥ 10


Solve the following system of inequalities graphically: 5x + 4y ≤ 20, x ≥ 1, y ≥ 2


Solve the following system of inequalities graphically: 2x + y≥ 4, x + y ≤ 3, 2x – 3y ≤ 6


Solve the following system of inequalities graphically: 4x + 3y ≤ 60, y ≥ 2xx ≥ 3, xy ≥ 0


Find all pairs of consecutive odd natural number, both of which are larger than 10, such that their sum is less than 40. 


A solution is to be kept between 86° and 95°F. What is the range of temperature in degree Celsius, if the Celsius (C)/ Fahrenheit (F) conversion formula is given by\[F = \frac{9}{5}C + 32\]


A solution is to be kept between 30°C and 35°C. What is the range of temperature in degree Fahrenheit? 


To receive grade 'A' in a course, one must obtain an average of 90 marks or more in five papers each of 100 marks. If Shikha scored 87, 95, 92 and 94 marks in first four paper, find the minimum marks that she must score in the last paper to get grade 'A' in the course. 


The longest side of a triangle is three times the shortest side and third side is 2 cm shorter than the longest side if the perimeter of the triangles at least 61 cm, find the minimum length of the shortest-side.


How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content? 


The water acidity in a pool is considered normal when the average pH reading of three daily measurements is between 7.2 and 7.8. If the first two pH reading are 7.48 and 7.85, find the range of pH value for the third reading that will result in the acidity level being normal.


Write the set of values of x satisfying the inequation (x2 − 2x + 1) (x − 4) < 0. 


Write the solution set of the equation |2 − x| = x − 2.


Write the solution set of the inequation \[\left| \frac{1}{x} - 2 \right| > 4\] 


Write the set of values of x satisfying the inequations 5x + 2 < 3x + 8 and \[\frac{x + 2}{x - 1} < 4\] 


Write the solution of set of\[\left| x + \frac{1}{x} \right| > 2\]


Solve each of the following system of equations in R.

\[5x - 7 < 3\left( x + 3 \right), 1 - \frac{3x}{2} \geq x - 4\]

 


Find the graphical solution of the following system of linear inequations:
2x + 3y ≥ 12, – x + y ≤ 3, x ≤ 4, y ≥ 3


Solve the following system of inequalities graphically.
2x – y ≥ 1, x – 2y ≤ – 1


Find the linear inequalities for which the shaded region in the given figure is the solution set.


Show that the following system of linear inequalities has no solution x + 2y ≤ 3, 3x + 4y ≥ 12, x ≥ 0, y ≥ 1


Show that the solution set of the following system of linear inequalities is an unbounded region 2x + y ≥ 8, x + 2y ≥ 10, x ≥ 0, y ≥ 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×