English

Solve each of the following system of equations in R. 5 x − 7 < 3 ( x + 3 ) , 1 − 3 x 2 ≥ x − 4 - Mathematics

Advertisements
Advertisements

Question

Solve each of the following system of equations in R.

\[5x - 7 < 3\left( x + 3 \right), 1 - \frac{3x}{2} \geq x - 4\]

 

Answer in Brief

Solution

\[5x - 7 < 3\left( x + 3 \right)\]
\[ \Rightarrow 5x - 7 < 3x + 9\]
\[ \Rightarrow 5x - 3x < 9 + 7\]
\[ \Rightarrow 2x < 16\]
\[ \Rightarrow x < 8\]
\[ \Rightarrow x \in \left( - \infty , 8 \right) . . . (i)\]
\[\text{ Also } , 1 - \frac{3x}{2} \geq x - 4\]
\[ \Rightarrow x - 4 \leq 1 - \frac{3x}{2}\]
\[ \Rightarrow x + \frac{3x}{2} \leq 1 + 4\]
\[ \Rightarrow \frac{2x + 3x}{2} \leq 5\]
\[ \Rightarrow 5x \leq 10 \]
\[ \Rightarrow x \leq 2 \]
\[ \Rightarrow x \in ( - \infty , 2] . . . (ii)\]
\[\text{ Hence, the solution of the given set of inequalities is theintersection of (i) and (ii) }  . \]
\[\left( - \infty , 8 \right) \cap ( - \infty , 2] = ( - \infty , 2]\]
\[\text{ Hence, the solution of the given set of inequalities is }  ( - \infty , 2] . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.2 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 15 Linear Inequations
Exercise 15.2 | Q 14 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the following system of inequalities graphically: x ≥ 3, y ≥ 2


Solve the following system of inequalities graphically: 3x + 2y ≤ 12, x ≥ 1, y ≥ 2


Solve the following system of inequalities graphically: 2x + y≥ 6, 3x + 4y ≤ 12


Solve the following system of inequalities graphically: 2x – y > 1, x – 2y < –1


Solve the following system of inequalities graphically: x + y ≤ 6, x + y ≥ 4


Solve the following system of inequalities graphically: x + y ≤ 9, y > xx ≥ 0


Solve the following system of inequalities graphically: 5x + 4y ≤ 20, x ≥ 1, y ≥ 2


Solve the following system of inequalities graphically: 2x + y≥ 4, x + y ≤ 3, 2x – 3y ≤ 6


Find all pairs of consecutive odd positive integers, both of which are smaller than 10, such that their sum is more than 11. 


Find all pairs of consecutive odd natural number, both of which are larger than 10, such that their sum is less than 40. 


The marks scored by Rohit in two tests were 65 and 70. Find the minimum marks he should score in the third test to have an average of at least 65 marks. 


A solution is to be kept between 30°C and 35°C. What is the range of temperature in degree Fahrenheit? 


To receive grade 'A' in a course, one must obtain an average of 90 marks or more in five papers each of 100 marks. If Shikha scored 87, 95, 92 and 94 marks in first four paper, find the minimum marks that she must score in the last paper to get grade 'A' in the course. 


A company manufactures cassettes and its cost and revenue functions for a week are \[C = 300 + \frac{3}{2}x \text{ and } R = 2x\] respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold for the company to realize a profit? 

 


The longest side of a triangle is three times the shortest side and third side is 2 cm shorter than the longest side if the perimeter of the triangles at least 61 cm, find the minimum length of the shortest-side.


Write the set of values of x satisfying the inequation (x2 − 2x + 1) (x − 4) < 0. 


Write the solution set of the inequation \[\left| \frac{1}{x} - 2 \right| > 4\] 


Write the number of integral solutions of \[\frac{x + 2}{x^2 + 1} > \frac{1}{2}\]


Write the set of values of x satisfying the inequations 5x + 2 < 3x + 8 and \[\frac{x + 2}{x - 1} < 4\] 


Write the solution of set of\[\left| x + \frac{1}{x} \right| > 2\]


Find the graphical solution of the following system of linear inequations:
x – y ≤ 0, 2x – y ≥ − 2


Find the graphical solution of the following system of linear inequations:
3x + 2y ≤ 1800, 2x + 7y ≤ 1400


Find the graphical solution of the following system of linear inequations:
`"x"/60 + "y"/90 ≤ 1`, `"x"/120 + "y"/75 ≤ 1`, y ≥ 0, x ≥ 0


Solve the following system of inequalities graphically.
3x + 2y ≤ 12, x ≥ 1, y ≥ 2


Solve the following system of inequalities `(2x + 1)/(7x - 1) > 5, (x + 7)/(x - 8) > 2`


Find the linear inequalities for which the shaded region in the given figure is the solution set.


Show that the following system of linear inequalities has no solution x + 2y ≤ 3, 3x + 4y ≥ 12, x ≥ 0, y ≥ 1


Show that the solution set of the following system of linear inequalities is an unbounded region 2x + y ≥ 8, x + 2y ≥ 10, x ≥ 0, y ≥ 0.


Solution set of x ≥ 0 and y ≤ 0 is


Solution set of x ≥ 0 and y ≤ 1 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×