Advertisements
Advertisements
Question
Find the mean of: 7, 10, 4 and 17
Solution
7, 10, 4 and 17
Required mean = `"Sum of data values"/"No. of data values"`
`= (7 + 10 + 4 + 17)/4`
`= 3.8/4`
= 9.5
APPEARS IN
RELATED QUESTIONS
The mean of the following distribution is 52 and the frequency of class interval 30-40 is ‘f’. Find ‘f’.
Class Interval | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency | 5 | 3 | f | 7 | 2 | 6 | 13 |
The mean of the following distribution is 62.8 and the sum of all the frequencies is 50. Find the missing frequencies f1 and f2.
Class | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 | 100 – 120 |
Frequency | 5 | f1 | 10 | f2 | 7 | 8 |
Find the mode of following data, using a histogram:
Class | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency | 5 | 12 | 20 | 9 | 4 |
Following 10 observations are arranged in ascending order as follows.
2, 3, 5, 9, x + 1, x + 3, 14, 16, 19, 20
If the median of the data is 11, find the value of x.
Draw a histogram for the following distribution and estimate the mode:
Marks% | 30-39 | 40-49 | 50-59 | 60-69 | 70-79 | 80-89 | 90-99 |
No. of students | 14 | 26 | 40 | 92 | 114 | 78 | 36 |
Find the median of 26, 33, 41, 18, 30, 22, 36, 45 and 24
Find the median of the given values : 47, 53, 62, 71, 83, 21, 43, 47, 41
Find the median of the 10 observations 36, 33, 45, 28, 39, 45, 54, 23, 56, 25. If another observation 35 is added to the above data, what would be the new median?
Which of the following has the same mean, median and mode?
If the extreme observations on both the ends of a data arranged in ascending order are removed, the median gets affected.