Advertisements
Advertisements
Question
Find the remainder when 2x3 – 3x2 + 4x + 7 is divided by 2x + 1
Solution
Let 2x + 1 = 0,
then 2x – 1
⇒ x = `-(1)/(2)`
Now substituting the value of x in f(x)
`f(-1/2) = 2(-1/2)^2 -3(-1/2)^2 + 4(-1/2) + 7`
= `2(-1/8) -3(1/4) + 4(-1/2) + 7`
= `-(1)/(4) - (3)/(4) - 2 + 7`
= –1 + – 2 + 7
= 4
∴ Remainder = 4.
APPEARS IN
RELATED QUESTIONS
What number should be subtracted from x3 + 3x2 – 8x + 14 so that on dividing it by x – 2, the remainder is 10?
Using the Remainder Theorem find the remainders obtained when ` x^3 + (kx + 8 ) x + k ` is divided by x + 1 and x - 2 .
Hence find k if the sum of the two remainders is 1.
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(x2 − 7x + 9) ; (x + 1)
Find without division, the remainder in the following:
8x2 - 2x + 1 is divided by (2x+ 1)
What number should be subtracted from the polynomial f(x)= 2x3 - 5x2 +8x -17 so that the resulting polynomial is exactly divisible by (2x - 5)?
Find the remainder (without division) on dividing 3x2 + 5x – 9 by (3x + 2)
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3)x – 6 leave the same remainder. Find the value of ‘p’.
When x3 – 3x2 + 5x – 7 is divided by x – 2,then the remainder is
If on dividing 4x2 – 3kx + 5 by x + 2, the remainder is – 3 then the value of k is
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 2x2 – 4x – 1, g(x) = x + 1