Advertisements
Advertisements
Question
Find the slope of the following line which passes through the points:
A(2, −1), B(4, 3)
Solution
Here, A ≡ (2, –1) and B ≡ (4, 3)
Slope of line AB = `(y_2 - y_1)/(x_2 - x_1)`
= `(3 - (-1))/(4 - 2)`
= `4/2`
= 2
APPEARS IN
RELATED QUESTIONS
Find the slope of the following line which passes through the points:
G(7, 1), H(−3, 1)
Find the slope of the line whose inclination is 30°
Find the slope of the line which makes angle of 45° with the positive direction of the Y-axis measured anticlockwise
Find the acute angle between the X-axis and the line joining points A(3, −1) and B(4, −2).
Select the correct option from the given alternatives:
If A is (5, −3) and B is a point on the x-axis such that the slope of line AB is −2 then B ≡
Select the correct option from the given alternatives:
A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y−interecpt is
Answer the following question:
Find the value of k the points A(1, 3), B(4, 1), C(3, k) are collinear
Find the equation of the lines passing through the point (1, 1) with y-intercept (– 4)
Find the equation of the lines passing through the point (1,1) and (– 2, 3)
Find the equation of the lines passing through the point (1, 1) and the perpendicular from the origin makes an angle 60° with x-axis
Find the equation of the line passing through the point (1, 5) and also divides the co-ordinate axes in the ratio 3:10
The normal boiling point of water is 100°C or 212°F and the freezing point of water is 0°C or 32°F. Find the linear relationship between C and F
The normal boiling point of water is 100°C or 212°F and the freezing point of water is 0°C or 32°F. Find the value of C for 98.6°F
An object was launched from a place P in constant speed to hit a target. At the 15th second, it was 1400 m from the target, and at the 18th second 800 m away. Find the distance between the place and the target
An object was launched from a place P in constant speed to hit a target. At the 15th second, it was 1400 m from the target, and at the 18th second 800 m away. Find the distance covered by it in 15 seconds
Population of a city in the years 2005 and 2010 are 1,35,000 and 1,45,000 respectively. Find the approximate population in the year 2015. (assuming that the growth of population is constant)
Find the equation of the line, if the perpendicular drawn from the origin makes an angle 30° with x-axis and its length is 12
Show that the points (1, 3), (2, 1) and `(1/2, 4)` are collinear, by using a straight line
A 150 m long train is moving with constant velocity of 12.5 m/s. Find the equation of the motion of the train
A 150 m long train is moving with constant velocity of 12.5 m/s. Find time taken to cross a pole
A spring was hung from a hook in the ceiling. A number of different weights were attached to the spring to make it stretch, and the total length of the spring was measured each time is shown in the following table
Weight (kg) | 2 | 4 | 5 | 8 |
Length (cm) | 3 | 4 | 4.5 | 6 |
Draw a graph showing the results.
A spring was hung from a hook in the ceiling. A number of different weights were attached to the spring to make it stretch, and the total length of the spring was measured each time is shown in the following table
Weight (kg) | 2 | 4 | 5 | 8 |
Length (cm) | 3 | 4 | 4.5 | 6 |
What is the actual length of the spring
A spring was hung from a hook in the ceiling. A number of different weights were attached to the spring to make it stretch, and the total length of the spring was measured each time is shown in the following table
Weight (kg) | 2 | 4 | 5 | 8 |
Length (cm) | 3 | 4 | 4.5 | 6 |
If the spring has to stretch to 9 cm long, how much weight should be added?
In a shopping mall there is a hall of cuboid shape with dimension 800 × 800 × 720 units, which needs to be added the facility of an escalator in the path as shown by the dotted line in the figure. Find the minimum total length of the escalator
Choose the correct alternative:
The line (p + 2q)x + (p − 3q)y = p − q for different values of p and q passes through the point
Choose the correct alternative:
The y-intercept of the straight line passing through (1, 3) and perpendicular to 2x − 3y + 1 = 0 is
A point on the straight line, 3x + 5y = 15 which is equidistant from the coordinate, axes will lie only in ______.
The coordinates of vertices of base BC of an isosceles triangle ABC are given by B(1, 3) and C(–2, 7) which of the following points can be the possible coordinates of the vertex A?
Find the coordinates of the point which divides the line segment joining the points (1, –2, 3) and (3, 4, –5) internally in the ratio 2 : 3.
If planes x – cy – bz = 0, cx – y + az = 0 and bx + ay – z = 0 pass through a straight line then a2 + b2 + c2 = ______.