Advertisements
Advertisements
Question
Find the slope of the following line which passes through the points:
G(7, 1), H(−3, 1)
Solution
Given: G(7, 1) and H( –3, 1)
∴ Slope of the line GH = `(y_2-y_1)/(x_2-x_1) = (1-1)/(-3 - 7) = 0/(-10) = 0`
APPEARS IN
RELATED QUESTIONS
Find the slope of the following line which passes through the points:
E(2, 3), F(2, −1)
Find the slope of the line whose inclination is 30°
Find the slope of the line whose inclination is `pi/4`
A line makes intercepts 3 and 3 on the co-ordinate axes. Find the inclination of the line.
If points A(h, 0), B(0, k) and C(a, b) lie on a line then show that `"a"/"h" + "b"/"k"` = 1
Select the correct option from the given alternatives:
The angle between the line `sqrt(3)x - y - 2` = 0 and `x - sqrt(3)y + 1` = 0 is
Select the correct option from the given alternatives:
If kx + 2y − 1 = 0 and 6x − 4y + 2 = 0 are identical lines, then determine k
Answer the following question:
Find the value of k if the slope of the line passing through the points P(3, 4), Q(5, k) is 9
Answer the following question:
Find the value of k the points A(1, 3), B(4, 1), C(3, k) are collinear
Answer the following question:
Find the equation of the line containing the point T(7, 3) and having inclination 90°.
Find the equation of the lines passing through the point (1, 1) with y-intercept (– 4)
Find the equation of the lines passing through the point (1, 1) and the perpendicular from the origin makes an angle 60° with x-axis
If P(r, c) is midpoint of a line segment between the axes then show that `x/"r" + y/"c"` = 2
If p is length of perpendicular from origin to the line whose intercepts on the axes are a and b, then show that `1/("p"^3) = 1/("a"^2) + 1/("b"^2)`
The normal boiling point of water is 100°C or 212°F and the freezing point of water is 0°C or 32°F. Find the value of F for 38°C
An object was launched from a place P in constant speed to hit a target. At the 15th second, it was 1400 m from the target, and at the 18th second 800 m away. Find the distance between the place and the target
An object was launched from a place P in constant speed to hit a target. At the 15th second, it was 1400 m from the target, and at the 18th second 800 m away. Find time taken to hit the target
Find the equation of the line, if the perpendicular drawn from the origin makes an angle 30° with x-axis and its length is 12
Show that the points (1, 3), (2, 1) and `(1/2, 4)` are collinear, by using concept of slope
Show that the points (1, 3), (2, 1) and `(1/2, 4)` are collinear, by using any other method
A straight line is passing through the point A(1, 2) with slope `5/12`. Find points on the line which are 13 units away from A
A 150 m long train is moving with constant velocity of 12.5 m/s. Find time taken to cross the bridge of length 850 m
A spring was hung from a hook in the ceiling. A number of different weights were attached to the spring to make it stretch, and the total length of the spring was measured each time is shown in the following table
Weight (kg) | 2 | 4 | 5 | 8 |
Length (cm) | 3 | 4 | 4.5 | 6 |
Draw a graph showing the results.
A spring was hung from a hook in the ceiling. A number of different weights were attached to the spring to make it stretch, and the total length of the spring was measured each time is shown in the following table
Weight (kg) | 2 | 4 | 5 | 8 |
Length (cm) | 3 | 4 | 4.5 | 6 |
What is the actual length of the spring
In a shopping mall there is a hall of cuboid shape with dimension 800 × 800 × 720 units, which needs to be added the facility of an escalator in the path as shown by the dotted line in the figure. Find the heights at which the escalator changes its direction
Choose the correct alternative:
Equation of the straight line perpendicular to the line x − y + 5 = 0, through the point of intersection the y-axis and the given line
Choose the correct alternative:
The line (p + 2q)x + (p − 3q)y = p − q for different values of p and q passes through the point
If one of the lines given by kx2 + 2xy – 3y2 = 0 is perpendicular to the line 3x + 5y+ 1 = 0, then the value of k is ______.
The distance of the origin from the centroid of the triangle whose two sides have the equations. x – 2y + 1 = 0 and 2x – y – 1 = 0 and whose orthocenter is `(7/3. 7/3)` is ______.
The number of possible tangents which can be drawn to the curve 4x2 – 9y2 = 36, which are perpendicular to the straight line 5x + 2y – 10 = 0 is ______.
The coordinates of vertices of base BC of an isosceles triangle ABC are given by B(1, 3) and C(–2, 7) which of the following points can be the possible coordinates of the vertex A?
The locus of the midpoint of the portion intercept between the axes by the line xcosa + ysina = P where P is a constant is ______.
Find the coordinates of the point which divides the line segment joining the points (1, –2, 3) and (3, 4, –5) internally in the ratio 2 : 3.
If planes x – cy – bz = 0, cx – y + az = 0 and bx + ay – z = 0 pass through a straight line then a2 + b2 + c2 = ______.
Find the transformed equation of the straight line 2x – 3y + 5 = 0, when the origin is shifted to the point (3, –1) after translation of axes.