Advertisements
Advertisements
Question
Find the slope, x-intercept, y-intercept of the following line : x + 2y = 0
Solution
Given equation of the line is x + 2y = 0
Comparing this equation with ax + by + c = 0,
we get
a = 1, b = 2, c = 0
∴ Slope of the line = `(-"a")/"b" = (-1)/2`
x-intercept = `(-"c")/"a" = (0)/1` = 0
y-intercept = `(-"c")/"b" = (0)/2` = 0
APPEARS IN
RELATED QUESTIONS
The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equations of side BC
The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equations of the line passing through the mid points of sides AB and BC.
Find the equations of a line containing the point A(3, 4) and making equal intercepts on the co-ordinate axes.
Find the equations of the altitudes of the triangle whose vertices are A(2, 5), B(6, – 1) and C(– 4, – 3).
Find the slope, x-intercept, y-intercept of the following line : 2x + 3y – 6 = 0
Write the following equation in ax + by + c = 0 form: y = 2x – 4
Write the following equation in ax + by + c = 0 form: `x/2 + y/4` = 1
Write the following equation in ax + by + c = 0 form: `x/3 = y/2`
Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence, find its slope.
Find the X-intercept of the line x + 2y – 1 = 0
Find the equation of the line: containing the point (2, 1) and having slope 13.
Find the equation of the line: having an inclination 60° and making intercept 4 on the Y-axis.
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the sides
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the medians
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of Perpendicular bisectors of sides
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of altitudes of ΔABC