Advertisements
Advertisements
Question
The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equations of the line passing through the mid points of sides AB and BC.
Solution
Vertices of ΔABC are A(3, 4), B(2, 0) and C(1, 6).
Let D and E be the midpoints of side AB and side BC respectively.
∴ D = `((3 + 2)/2, (4 + 0)/2) = (5/2, 2)` and
E = `((2 - 1)/2, (0 + 6)/2) = (1/2, 3)`
∴ the equation of the line DE is A(3, 4)
∴ `(y - y_1)/(y_2 - y_1) = (x - x_1)/(x_2 - x_1)`
`=> (y - 2)/(3 - 2) = (x - 5/2)/(1/2 - 5/2)`
`=> (y - 2)/1 = ((2x - 5)/2)/((1 - 5)/2)`
`=> (y - 2)/1 = ((2x - 5)/2)/((- 4)/2)`
`=> (y - 2)/1 = (2x - 5)/(-4)`
∴ – 4(y – 2) = 2x – 5
∴ – 4y + 8 = 2x – 5
∴ 2x + 4y – 13 = 0.
APPEARS IN
RELATED QUESTIONS
Find the equation of the line passing through the points A(2, 0) and B(3, 4).
Line y = mx + c passes through the points A(2, 1) and B(3, 2). Determine m and c.
The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equations of side BC
The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equation of the median AD.
Find the x and y-intercepts of the following line: `(3x)/2 + (2y)/3` = 1
Find the x and y-intercepts of the following line: 2x – 3y + 12 = 0
Find the slope, x-intercept, y-intercept of the following line : 2x + 3y – 6 = 0
Find the slope, x-intercept, y-intercept of the following line : x + 2y = 0
Write the following equation in ax + by + c = 0 form: y = 2x – 4
Write the following equation in ax + by + c = 0 form: `x/3 = y/2`
Find the equation of the line: having an inclination 60° and making intercept 4 on the Y-axis.
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the sides
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the medians
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of Perpendicular bisectors of sides
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of altitudes of ΔABC