Advertisements
Advertisements
Question
The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equations of side BC
Solution
Vertices of ΔABC are A(3, 4), B(2, 0) and C(1, 6).
Equation of a line in two point form is
`(y - y_1)/(y_2 - y_1) = (x - x_1)/(x_2 - x_1)`
∴ The equation of the side BC is
`(y - 0)/(6 - 0) = (x - 2)/(1 - 2) ...[("B" = (x_1,y_1) = (2, 0)),("C" = (x_2,y_2) = (1, 6))]`
∴ `y/6 = (x - 2)/(-1)`
-y = 6 (x – 2)
-y = 6x - 12
∴ 6x + y - 12 = 0
APPEARS IN
RELATED QUESTIONS
Find the equation of the line passing through the points A(2, 0) and B(3, 4).
Line y = mx + c passes through the points A(2, 1) and B(3, 2). Determine m and c.
The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equation of the median AD.
Find the x and y-intercepts of the following line: `x/3 + y/2` = 1
Find the x and y-intercepts of the following line: `(3x)/2 + (2y)/3` = 1
Find the equations of a line containing the point A(3, 4) and making equal intercepts on the co-ordinate axes.
Find the slope, x-intercept, y-intercept of the following line : 2x + 3y – 6 = 0
Write the following equation in ax + by + c = 0 form: y = 2x – 4
Write the following equation in ax + by + c = 0 form: `x/3 = y/2`
Find the equation of the line whose x-intercept is 3 and which is perpendicular to the line 3x – y + 23 = 0.
Verify that A(2, 7) is not a point on the line x + 2y + 2 = 0.
Find the X-intercept of the line x + 2y – 1 = 0
Find the equation of the line: having slope 5 and containing point A(– 1, 2).
Find the equation of the line: through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co-ordinate axes.
Find the equation of the line: having slope 5 and making intercept 5 on the X−axis.
Find the equation of the line: having an inclination 60° and making intercept 4 on the Y-axis.
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of altitudes of ΔABC