Advertisements
Advertisements
Question
Verify that A(2, 7) is not a point on the line x + 2y + 2 = 0.
Solution
Given equation is x + 2y + 2 = 0.
Substituting x = 2 and y = 7 in L.H.S. of given equation, we get
L.H.S. = x + 2y + 2
= 2 + 2(7) + 2
= 2 + 14 + 2
= 18
≠ R.H.S.
∴ Point A does not lie on the given line.
APPEARS IN
RELATED QUESTIONS
Line y = mx + c passes through the points A(2, 1) and B(3, 2). Determine m and c.
The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equations of side BC
Find the x and y-intercepts of the following line: `x/3 + y/2` = 1
Find the equations of a line containing the point A(3, 4) and making equal intercepts on the co-ordinate axes.
Find the equations of the altitudes of the triangle whose vertices are A(2, 5), B(6, – 1) and C(– 4, – 3).
Find the slope, x-intercept, y-intercept of the following line : x + 2y = 0
Write the following equation in ax + by + c = 0 form: `x/2 + y/4` = 1
Find the equation of the line whose x-intercept is 3 and which is perpendicular to the line 3x – y + 23 = 0.
Find the equation of the line: having slope 5 and containing point A(– 1, 2).
Find the equation of the line: through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co-ordinate axes.
Find the equation of the line passing through the points A(–3, 0) and B(0, 4).
Find the equation of the line: having slope 5 and making intercept 5 on the X−axis.
Find the equation of the line: having an inclination 60° and making intercept 4 on the Y-axis.
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the sides
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the medians
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of altitudes of ΔABC