Advertisements
Advertisements
Question
Find the equation of the line: having slope 5 and making intercept 5 on the X−axis.
Solution
Since, the x-intercept of the required line is 5.
∴ it passes through (5, 0).
Also, slope(m) of the line is 5
Equation of the line in slope point form is
y – y1 = m(x – x1)
∴ the equation of the required line is
y – 0 = 5(x – 5)
∴ y = 5x – 25
∴ 5x – y – 25 = 0.
APPEARS IN
RELATED QUESTIONS
Find the equation of the line passing through the points A(2, 0) and B(3, 4).
The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equation of the median AD.
Find the x and y-intercepts of the following line: `x/3 + y/2` = 1
Find the x and y-intercepts of the following line: 2x – 3y + 12 = 0
Find the equations of a line containing the point A(3, 4) and making equal intercepts on the co-ordinate axes.
Find the equations of the altitudes of the triangle whose vertices are A(2, 5), B(6, – 1) and C(– 4, – 3).
Find the slope, x-intercept, y-intercept of the following line : 2x + 3y – 6 = 0
Find the slope, x-intercept, y-intercept of the following line : x + 2y = 0
Write the following equation in ax + by + c = 0 form: y = 4
Write the following equation in ax + by + c = 0 form: `x/2 + y/4` = 1
Find the equation of the line whose x-intercept is 3 and which is perpendicular to the line 3x – y + 23 = 0.
Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence, find its slope.
Find the X-intercept of the line x + 2y – 1 = 0
Find the equation of the line: through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co-ordinate axes.
Find the equation of the line passing through the points A(–3, 0) and B(0, 4).
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the medians