Advertisements
Advertisements
Question
Find the sum of the sequence `-1/3, 1, -3, 9, ..........` upto 8 terms.
Solution
Here, `1/(-1/3) = (-3)/1`
= `9/(-3)`
= –3
Thus, the given sequence is a G.P. with first term (a) = `-1/3` and common ratio (r) = –3 ...(∵ r < 1)
Number of terms to be added, n = 8
∴ `S_n = (a(1 - r^n))/(1 - r)`
`=> S_8 = (-1/3(1 - (-3)^8))/(1 + 3)`
= `(-1 + 3^8)/12`
= `1/12 (3^8 - 1)`
APPEARS IN
RELATED QUESTIONS
Find, which of the following sequence from a G.P. :
9, 12, 16, 24, ................
Which term of the G.P.:
`-10, 5/sqrt(3), -5/6,....` is `-5/72`?
The fifth term of a G.P. is 81 and its second term is 24. Find the geometric progression.
Find the geometric progression with 4th term = 54 and 7th term = 1458.
If for a G.P., pth, qth and rth terms are a, b and c respectively; prove that : (q – r) log a + (r – p) log b + (p – q) log c = 0
Find the sum of G.P. :
1 + 3 + 9 + 27 + .......... to 12 terms.
Find the sum of G.P. :
`sqrt(3) + 1/sqrt(3) + 1/(3sqrt(3)) + ..........` to n terms.
Find the geometric mean between `4/9` and `9/4`
Q 3.2
Find the 5th term of the G.P. `5/2, 1, .........`